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Abstract— Lately, short antennas have attracted broadcast and
communication community attention.

This kind of antennas has been used since the 1920’s.
Top-loaded monopoles are the logical antennas to be used in

order to get a low profile antenna and a performance according
to the broadcaster and communication needs.

In this paper, top-loaded monopoles have been studied exhaus-
tively using the transmission line technique, obtaining improved
expressions for the antenna radiation resistance taking into
account the top-base current relationship and under different
top-loading conditions.

This idea of using an equivalent transmission line technique
has been used since the 1920’s in order to obtain the antenna
input reactance.

Using this old idea, the novel approach here permits to obtain
the near and far field expressions from the current distribution on
the antenna structure. Near field calculation is used to determine
the surface current density on the ground plane.

From the artificial and natural ground plane surface current
density, the power dissipation is calculated and the ground plane
equivalent loss resistance is obtained.

In all cases, as a first approximation, a half-wavelength ground
plane radius has been used, because this is the maximum distance
covered by the ground surface current under the antenna, closing
the antenna electric circuit. Beyond this distance, the ground
currents do not return to the antenna generator and are taken
into account in the surface wave propagation calculations. The
half-wavelength ground plane surface is partially occupied by the
metallic radial ground system and the remainder by the natural
soil.

Artificial ground plane behavior is paramount in obtaining
the best performance of a short antenna. This kind of antennas
could perform very close to a standard quarter-wave monopole if
they work with optimum dimensions. For these reasons, a short
antenna and the corresponding artificial ground plane have been
analyzed modifying the number of radials and their lengths, in
order to achieve an optimum performance or to obtain maximum
field strength on several soil conditions of the earth surface.

A very simple and efficient antenna could be obtained, giving
to the broadcast and communication community a product that
could fulfill the required performance to radiate a high quality
AM or digital transmission on MF band, and good speech quality
on LF band.
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Broadcast Antennas, LF Broadcast Transmitting Antennas,
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Fig. 1. Top-loaded antennas.

I. INTRODUCTION

IN a previous paper [1] several problems concerning short
antennas have been pointed out.

Efficiency and gain of short antennas have been focused
here, in order to determine the importance of those factors
affecting the radiation properties of these radiators [12], [14].
These factors are taken into account within the low frequency
(150 − 250 kHz) and medium frequency (535 − 1705 kHz)
broadcast bands.

The most important factors affecting the antenna efficiency
are the wire resistance, the insulator equivalent loss resistance
and the ground plane equivalent loss resistance.

These factors are responsible of the antenna efficiency,
because they dissipate part of the antenna input power and,
for this reason, the antenna gain can be much smaller than the
antenna directivity.

It was pointed out that the antenna directivity is an antenna
natural property, and it depends on the antenna radiation
pattern, which is close to the elevation angle cosine function
(cosα or sin θ) in the case of a short monopole, like a top-
loaded antenna (see (116) in Appendix C).

The monopole top-load does not modify the antenna radia-
tion pattern, but it only modifies the antenna current distribu-
tion.

In general, insulator equivalent loss resistance is relatively
less important than the wire resistance or the ground plane
equivalent loss resistance and, for this reason, it can practically
be ignored in the efficiency calculation.

Wire resistance can easily be obtained using the high
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Fig. 2. Sketch of a top-loaded antenna and its wire currents.

Fig. 3. Sketch of the top-loaded antenna equivalent transmission lines and
their currents and voltages.

frequency resistance expression, where the skin effect is taken
into account. Under these circumstances, the ground plane
equivalent loss resistance is of paramount importance, and its
determination constitutes a very difficult task.

In the case of a monopole antenna, the ground plane under
it, to be taken into account, is not only the artificial ground
plane laid down with metallic radials, but also the natural
soil from the radial ends to a distance of half-wavelength
from the monopole base or feeding point. Within this half-
wavelength radius, the ground plane currents are part of the
antenna electric circuit, and they are represented as a current I 0

flowing through the ground plane loss resistance in the antenna
equivalent circuit.

The dissipated power is calculated knowing the near tan-
gential magnetic field or the surface current density on this
ground plane, whose radius is half-wavelength.

Using the current distribution on the antenna vertical part,
the vector magnetic potential is calculated. Near and far
magnetic and electric fields are obtained from this potential.

Soil impedance is obtained from the electromagnetic theory
and the soil-metallic radials combination impedance using
the same technique as Abbott [16]. These parameters, soil
resistance and near magnetic field, permit the ground plane
dissipated power calculation. Then, the ground plane equiv-
alent loss resistance can be determined from this dissipated
power and from the antenna effective input current.

The ground plane equivalent loss resistance is generally
not calculated by the standard softwares. Nevertheless, this
parameter is very important to calculate the antenna efficiency.

Antenna current distributions on the vertical part and on the
top-load are determined quite accurately using the equivalent
transmission line theory, and the tip voltages can also be
determined from it.

Interesting results were obtained from the determination
of the resonant antenna dimensions for different top-loading
conditions. These results permit the choice of the more
economical antenna or the antenna whose bandwidth and
gain are better approaching the transmission necessities. The
determination of these parameters permits a clear vision of the
antenna possibilities and limitations, according to the antenna
height and operation frequency.

II. TOP-LOADED ANTENNAS

It is well known that short monopole antennas have a
linear current distribution when their heights are lower than
0.15λ and a zero current at the top. Under these conditions,
the radiation resistance depends on the following expression,
determined from the power density space integration or the
antenna total radiated power, divided by the square of the
effective input current [4]. Then,

Rrad = 40 π2

(
H
λ

)2

(1)

Also

Rrad = 10 (βH)2 (2)

Where
Rrad is the antenna radiation resistance [Ω].
H is the antenna height [m].
λ is the wavelength [m].
β = 2 π/λ is the space phase constant or wave number

[rad/m].

These expressions can be obtained from any antenna book
[4], [5], [6], [7].

This radiation resistance is quite small when the ratio H/λ
is less than 0.1. This is due to the small area of the current
distribution along the antenna, calculated from the base to the
top. In this case, the current distribution area is the area of a
triangle βH in height and the antenna input current I0 as the
triangle base. The top current It is, of course, a null.

In order to increase the current distribution area, a top-load
is used. In this specific case, the top current It is not a null
and it depends on the top-loading conditions.
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The top-load is built up using one (n = 1) or several
(n > 1) branches installed parallel to the surface of the earth
and connected to the top of the antenna vertical wire.

If the top-load consists of only one branch (n = 1), an
Inverted-L antenna is obtained.

If two branches are used (n = 2), a T antenna is obtained
and if the branch quantity is four (n = 4), the antenna is
called an X antenna. Otherwise, a Star antenna is obtained.
This kind of antennas can be seen in Fig. 1.

III. ANTENNA INPUT IMPEDANCE

In Fig. 2 a sketch of an n-branch top-loaded antenna and
its image under the ground plane can be seen. Since currents
flowing on the vertical part of the antenna and its image are
in phase, it follows that they will produce a net field intensity
close and far away in the surrounding space. Currents flowing
on the top-load and its image are out of phase and, because of
the short distance in wavelengths between them (2 H � λ),
the net field intensity in the surrounding space is practically
zero and they do not make any contribution to the antenna
radiated power.

The current distribution on the antenna vertical wire starts
as the base current I0, at the antenna base, and ends as the
top current It, at the antenna top. For an n-branch top-loaded
antenna, the current distribution on any branch starts as I t/n,
at the antenna top, and, finally, goes down to zero at the tip
of the top-load wires, IL = 0.

In order to determine the antenna input impedance the
transmission line technique can be used. The equivalent trans-
mission lines, corresponding to the antenna top-load, depend
on the antenna type. In Fig. 3 a sketch of the antenna
equivalent transmission lines can be seen, where the current
and voltage distributions are indicated.

In the Inverted-L antenna case (n = 1), only one transmis-
sion line is attached to the top of the antenna vertical wire. In
the other cases, there are several transmission lines or branches
(n > 1), depending on the antenna type, and they will be
connected in parallel to the antenna top.

Each top-load branch transmission line can be made up of
one (nc = 1) or several wires (nc > 1), taking into account
the potential gradient when high power is employed.

The characteristic impedance of the top-load, considered as
a transmission line, can be calculated using the logarithmic po-
tential theory. If one wire is used (nc = 1), the corresponding
characteristic impedance Z0t is given by [3]

Z0t = 60 ln
(

2 H
a

)
(3)

Where
H is the antenna height [m].
a is the wire radius [m].

The antenna vertical wire can also be considered as another
transmission line, with an average characteristic impedance
Z0m given by [3]

Z0m = 60 ln
(

H
a

)
(4)

For the antenna vertical wire, there are several expres-
sions that can be used to calculate the average characteristic
impedance, and all of them give results very close to those
obtained here [2], [3].

The input impedance at the top of the antenna, looking along
the top-load, is equivalent to the input impedance of n open
end low loss transmission lines in parallel. Therefore,

Zt = jXt = −j
Z0t

n tanβL
(5)

Where
Zt is the antenna top impedance [Ω].
Xt is the antenna top reactance [Ω].
Z0t is the top-load characteristic impedance [Ω].
L is the top-load length [m].
n is the number of top-load branches.
β = 2 π/λ is the space phase constant or wave number

[rad/m].

Knowing the antenna top reactance Xt, the antenna top-load
capacitance can easily be found as follows

Ct =
1

2 π f | Xt | [F] (6)

Where f is the operation frequency [Hz].
The antenna input impedance Za is equal to the top

impedance Zt translated to the antenna input terminals.
If the transmission lines are considered to be of low losses,

the input impedance will be a pure reactance, nevertheless, the
real part of this impedance depends on the antenna radiation
resistance and other losses.

Then, the antenna input impedance will be

Za = Ra + jXa (7)

Where
Za is the antenna input impedance [Ω].
Ra is the real part of the antenna input impedance [Ω].
Xa is the antenna input reactance [Ω].

The real part of the antenna input impedance, Ra, depends
on the antenna radiation resistance Rrad and the equivalent
loss resistance Rloss. The loss resistance Rloss depends on
the conductor resistance Rc, the insulator equivalent loss
resistance Ri and the ground plane equivalent loss resistance
Rgp.

Therefore,

Ra = Rrad + Rloss (8)

Where

Rloss = Rc + Ri + Rgp (9)

In actual cases, using well designed insulators, R i is much
smaller than the other loss resistances, Rc and Rgp. For this
reason, a very small error is introduced in all calculations if
Ri is neglected (Ri

∼= 0).
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Fig. 4. Antenna geometry used to calculate the electromagnetic field in
cylindrical coordinates.

Radiation resistance Rrad, conductor resistance Rc and
ground plane equivalent loss resistance Rgp will be determined
in Sections VII, VIII and IX, respectively.

Antenna reactance Xa, according to the transmission line
theory [8], [9], is given by

Xa = Z0m
Z0m tanβH + Xt

Z0m − Xt tanβH
(10)

Where
Xa is the antenna input reactance [Ω].
Z0m is the antenna average characteristic impedance [Ω].
Xt is the antenna top reactance [Ω].
H is the antenna height [m].

The top-loaded antenna is resonant if Xa = 0. Under this
condition, the top reactance Xt becomes

Xt = −Z0m tanβH (11)

Taking into account (5), the length of each top-load branch,
for a resonant antenna, becomes

Lres =
λ

2 π
arctan

(
Z0t

n Z0m tanβH

)
(12)

In most cases, it is very important to built up a self-resonant
antenna, because the input voltage is very small compared to
a series inductance resonant antenna, where the input voltage
is Q times the applied voltage. This condition can be fulfilled
choosing a proper top-load length (L = L res) for any antenna
height.

It is interesting to notice that the top reactance Xt and
capacitance Ct of any resonant top-loaded antenna, at a
given frequency, are of the same value and independent of
the top-load type. They depend only on the self-resonant
antenna height.

IV. ANTENNA CURRENT DISTRIBUTION

The current distribution on the antenna vertical wire, con-
sidered as a piece of transmission line (see Appendix A), will
be

I(z) = I0

(
cosβz +

Xa

Z0m
sinβz

)
0 ≤ z ≤ H (13)

The top current, It = I(z = H), is

It = I0

(
cosβH +

Xa

Z0m
sinβH

)
(14)

Then, the top to base current ratio, It/I0, is given by

It
I0

= cosβH +
Xa

Z0m
sinβH (15)

The current distribution on the top-load will be

I(ρ) =
It
n

(
cosβρ− sinβρ

tanβL

)
0 ≤ ρ ≤ L (16)

The tip current of the top-load is IL = I(ρ = L) = 0.
In general, a resonant antenna is convenient to be chosen

(Xa = 0) modifying the top-load length to L = L res.
In this case, the current expressions are simplified. There-

fore,

I(z) = I0 cosβz 0 ≤ z ≤ H (17)

It = I0 cosβH (18)

It
I0

= cosβH (19)

I(ρ) =
It
n

(
cosβρ− sinβρ

tanβLres

)
0 ≤ ρ ≤ Lres (20)

V. ANTENNA VOLTAGE DISTRIBUTION

The voltage distribution is important in order to know the
top voltage and the voltage at the tips of the top-load wires.
These voltages permit to choose the convenient insulators to
support the top wires.

The voltage distribution on the antenna vertical wire is given
by (see Appendix A)

V(z) = j I0 (Xa cosβz − Z0m sinβz) 0 ≤ z ≤ H (21)

The voltage at the antenna top, Vt = V(z = H), is

Vt = j I0 (Xa cosβH − Z0m sinβH) (22)

The voltage distribution on the top-load wires becomes

V(ρ) = j It

(
Xt cosβρ− Z0t

n
sinβρ

)
0 ≤ ρ ≤ L (23)

Where It is given by (14) and Xt by (5).
The top-load wire tip voltage, VL = V(ρ = L), becomes
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Fig. 5. Inverted-L antenna space impedance at 200 kHz.

VL = j It

(
Xt cosβL − Z0t

n
sinβL

)
(24)

When the antenna is resonant (Xa = 0), the voltage
expressions are simplified. Therefore,

V(z) = −j I0 Z0m sinβz 0 ≤ z ≤ H (25)

Vt = −j I0 Z0m sinβH (26)

V(ρ) = −j I0 cosβH
(

Z0m tanβH cosβρ+
Z0t

n
sinβρ

)
(27)

0 ≤ ρ ≤ Lres

VL = −j I0
Z0t cosβH
n sinβLres

(28)

It is interesting to observe that the tip voltage VL decreases
as the number of branches n of the top-load increases. For this
reason, the Inverted-L antenna has the maximum tip voltage
VL, while the top voltage Vt is the same for any resonant
top-loaded antenna of height H.

VI. ELECTROMAGNETIC FIELDS

A. Near Field

The general procedure is used to calculate the electromag-
netic fields around a resonant top-loaded antenna. For instance,
the magnetic vector potential can be calculated taking into
account the current distribution on the antenna vertical wire,
I(z) = I0 cosβz, because this is the only current that produces
the net electromagnetic field.

The antenna geometry used to calculate the electromagnetic
field can be seen in Fig. 4, where, as a first approximation,
the ground plane conductivity σ is considered to be infinite.

Under this condition, the magnetic vector potential in free
space, according to the current distribution, has only one
component in the z-direction, that is

Az =
µ0

4 π

∫ H

−H

I(z′)
e−jβR

R
dz′ (29)

Where R =
√

(z − z′)2 + ρ2 is the distance from the
antenna current element I(z′) dz′ to the observation point
(ρ, φ, z).

In Appendix B the magnetic vector potential has been
obtained, so the magnetic field H can be calculated using the
following classical expression:

H =
1
µ0

rotA (30)

In cylindrical coordinates,

Hφ = − 1
µ0

∂Az

∂ρ
(31)

Thus, for a resonant top-loaded antenna, the magnetic field
intensity on the ground plane, at z = 0, becomes

Hφ =
I0
2 π

e−jβr1

ρ

(
H
r1

cosβH + j sinβH
)

(32)

Where r1 =
√

H2 + ρ2 is the distance from the antenna top
to a point on the ground surface, and ρ is the distance from
the antenna base to the same point.

This is the magnetic field corresponding to a perfectly con-
ducting ground plane. The actual magnetic field is practically
of the same value close to the antenna base, as measurements
indicate [17], because it is not appreciably affected by the
finite soil conductivity [10], [11].

The electric field intensity E is obtained by means of the
Maxwell equation

rotH = jω ε0 E (33)

Thus, for a resonant top-loaded antenna, the electric field in-
tensity on the earth surface, at z = 0, has only one component
Ez for a perfectly conducting ground plane. Therefore,

Ez =
j I0 e−jβr1

2 π ε0 ω

(
H cosβH

r31
+

jβH cosβH
r21

− β sinβH
r1

)
(34)

The near magnetic and electric fields on the earth surface,
Hφ and Ez, are clearly more complex functions of the radial
distance ρ than in the case of the Hertz monopole, where H
is infinitesimal.

When the ground plane is not perfectly conducting, the
electric field develops a small radial component Eρ. This
electric field component Eρ is related to the magnetic field
Hφ as follows

Eρ =
{ −Zg Hφ for 0 < ρ < R0

−Zs Hφ for ρ > R0
(35)

Where
Zg is the parallel impedance of the soil and ground screen

[Ω].
Zs is the soil impedance [Ω].
R0 is the metallic ground screen radius [m].

The Eρ and Hφ field components produce a wave that
propagates into the soil under the antenna and is dissipated
as heat.
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Fig. 6. Sketch of one instant near electric field and ground plane conduction
currents.

B. Wave Impedance

The ratio between the near electric and magnetic fields, E z

and Hφ, is the wave impedance Z0 just above the earth surface
in the air.

The wave impedance is a complex magnitude, almost purely
imaginary very close to the antenna and almost a real magni-
tude at the distance of half-wavelength from the antenna base.
This can be seen as an example in Fig. 5.

This is a good representation of the antenna behavior, and it
means that the half-wavelength radius space surrounding the
antenna is part of the wave generator (oscillator). The antenna
is not only the conductive wires, but a hemispherical free space
wave generator half-wavelength in radius.

Through this hemispherical surface, a wave is radiated into
the surrounding free space. The earth area under this hemisfer-
ical space is a circle, which is very important, because all the
conductive currents flowing on it are part of the antenna circuit
and, for this reason, it must have the maximum conductivity in
order to achieve the maximum antenna efficiency. This circle
is half-wavelength in radius, as can be seen in Fig. 6.

For this reason, in order to calculate the antenna
efficiency, it is very important to take into account the
power dissipated by the near field on this circular surface.

The wave impedance Z0 is a relationship that changes its
real and imaginary parts as a function of the distance from
the antenna base. Near to half-wavelength, its value is almost
purely real and close to the resistive 377 Ω of the free space
intrinsic impedance Z00. This is an indication of a radiated
wave, where the power density is practically real or active,
flowing through the hemispherical surface.

C. Far Field

For broadcast use, in low and medium frequencies, field
intensity on the surface of the earth is of interest and, as a
first approximation, a planar earth can be considered.

Fig. 7. Top-loaded antenna current distributions and their equivalent areas.

Under this condition, the electromagnetic far field intensities
can be obtained from the near field expressions (32) and (34),
considering that ρ � H, r1 =

√
H2 + ρ2 ∼= ρ and neglecting

the terms in 1/ρ2 and 1/ρ3 in favor of the terms in 1/ρ.
Therefore, for a resonant top-loaded antenna, it follows that

Hφ = j
I0
2 π

e−jβρ

ρ
sinβH (36)

Ez = −j
β

ε0 ω

I0
2 π

e−jβρ

ρ
sinβH (37)

Where ρ is the distance from the antenna base to the far
field observation point on the earth, at z = 0.

In the case of a very short top-loaded antenna, βH � 1
and sinβH ∼= βH, then the far field expressions are exactly
the same of the Hertz monopole.

Taking into account that β/ωε0 is the free space intrinsic
impedance Z00, the electric field intensity will be

Ez = −j Z00
I0
2 π

e−jβρ

ρ
sinβH (38)

or

Ez = −Z00 Hφ (39)

Therefore, the obtained vector field intensities are

H = 1φHφ (40)

E = −1z Z00 Hφ (41)

These fields are the no attenuated radiated fields, because
they depend only on the inverse distance law. The actual
field intensities along the earth are affected by the physical
constants of the soil and the diffraction due to the spherical
earth [13].

The power density, P = (1/2)E× H�, becomes



7

0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H/λ

 R
c

[Ω] 1 

2 

4 
8 

n 

Fig. 8. Wire loss resistance as a function of the resonant antenna height
in wavelengths, for different numbers of top-load branches n, at 200 kHz.
(nc = 1, a = 6 · 10−3 m).

0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

H/λ

 R
c

[Ω]
1 

2 

4 
8 

n 

Fig. 9. Wire loss resistance as a function of the resonant antenna height
in wavelengths, for different numbers of top-load branches n, at 1 MHz.
(nc = 1, a = 6 · 10−3 m).

P = (−1z × 1φ)
1
2

Z00 | Hφ |2 (42)

or

P = 1ρ
1
2

Z00 | Hφ |2 = 1ρ Pρ (43)

It can be seen that the power density P is pointing outward,
i.e. the antenna generated wave is an outgoing wave.

In the far field, the ratio between the electric and magnetic
field intensities is the free space impedance, Z00 = 377 Ω.
This ratio is clearly obtained at a distance greater than half-
wavelength from the antenna base.

In Appendix C the far field expressions in the upper
hemisphere and in spherical coordinates are obtained.

VII. RADIATION RESISTANCE

The well known Hertz monopole is a top-loaded monopole
with a constant current distribution. In this case, the radiation
resistance is given by [4]

Rrad = 160 π2

(
H
λ

)2

(44)

Also

Rrad = 40 (βH)2 (45)

Where
Rrad is the antenna radiation resistance [Ω].
H is the antenna height [m].
λ is the wavelength [m].
β = 2 π/λ is the space phase constant or wave number

[rad/m].

In Fig. 7.a) the current distribution area of the Hertz
monopole can be seen.

If the base current is normalized, I0 = 1 [A], and the antenna
height is H in meters or βH in radians, the current distribution
area A, normalized to 1 Ampere, is given by

A = I0 βH = βH (46)

The radiation resistance of any current distribution is pro-
portional to the square of the area [3], that is

Rrad = K A2 (47)

In the Hertz monopole case, the constant K is equal to 40,
because the squared area is A2 = (βH)2 in (45). Then, for
any other antenna, the radiation resistance will be

Rrad = 40 A2 (48)

In the case of a short monopole with no top-load (Fig. 7.b),
the normalized current distribution area is A = βH/2, so the
radiation resistance will be

Rrad = 40
(
βH
2

)2

= 10 (βH)2 (49)

For any other top-loaded antenna (Fig. 7.c), the normalized
current distribution area is given by

A =
βH
2

(
1 +

It
I0

)
(50)

Therefore, the radiation resistance for any top-loaded an-
tenna will be

Rrad = 40
[
βH
2

(
1 +

It
I0

)]2
(51)

or

Rrad = 10 (βH)2
(

1 +
It
I0

)2

(52)

Also

Rrad = 40 π2

(
H
λ

)2(
1 +

It
I0

)2

(53)

This is the radiation resistance expression to be used for
any top-loaded antenna, where It/I0 is given by (15).

If the antenna is resonant, Xa = 0, L = Lres (12) and
It/I0 = cosβH (19). Then, the radiation resistance of any
resonant top-loaded antenna, including the Hertz monopole
(βH � 1 and cosβH ∼= 1), will be
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Rrad = 40π2

(
H
λ

)2

(1 + cosβH)2 (54)

This simple expression can successfully be used instead of
the exact expression due to a very small error introduced in
all calculations.

In Appendix E the exact expression for the radiation re-
sistance has been determined and in Table XV a comparison
between both expressions can be seen.

VIII. WIRE LOSS RESISTANCE

Antenna vertical wire and top-load wires do not have infinite
conductivity. For this reason, the conductor or wire loss
resistance Rc must be calculated taking into account the wire
conductivity σc and the wire equivalent radius a, according to
the current distribution on the antenna vertical wire and on the
top-load wires.

The wire loss resistance dissipates part of the antenna input
power, and can be placed in series with the radiation resistance
in the antenna equivalent circuit.

Conductor resistance per unit length R l can be calculated by
means of the following expression, which takes into account
the skin effect [4], that is
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Fig. 12. Artificial ground plane resistance as a function of distance
ρ, for different numbers of radials N and over average soil, at 1 MHz.
(σ = 10−2 S/m, εr = 10).
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Fig. 13. Artificial ground plane reactance as a function of distance ρ,
for different numbers of radials N and over average soil, at 1 MHz.
(σ = 10−2 S/m, εr = 10).

Rl =
1
a

√
f µ0

4 π σc
(55)

For a resonant top-loaded antenna, permeability of free
space, µ0 = 4π · 10−7 [H/m], and copper conductivity,
σc

∼= 5.8 · 107 [S/m], the last expression becomes

Rl =
4.16
a

√
f · 10−8 [Ω/m] (56)

The power dissipated in the resonant antenna conductors,
Wc, taking into account the current distribution, is given by

Wc =
1
2

∫ H

0

I2(z)Rl dz +
n
2

∫ Lres

0

I2(ρ)Rl dρ (57)

The first term of this expression is the power dissipated in
the antenna vertical wire, while the second one is the power
dissipated in the antenna n top-load branches.

The wire loss resistance Rc will be

Rc =
2 Wc

I20
(58)

or
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Fig. 14. View of the ground plane used to calculate the soil dissipated power.

Rc =
Rl

I20

(∫ H

0

I2(z) dz + n
∫ Lres

0

I2(ρ) dρ

)
(59)

The integrals in this expression can be solved analytically
and can be seen in Appendix F.

In Fig. 8 the wire loss resistance Rc for different resonant
top-loaded antennas can be seen as a function of the antenna
height at the frequency of 200 kHz and for a single (n c = 1)
copper conductor 6 mm in radius.

Also, in Fig. 9 the wire loss resistance Rc for different
resonant top-loaded antennas can be seen as a function of the
antenna height at the frequency of 1 MHz and for a single
(nc = 1) copper conductor 6 mm in radius.

From these figures, it is interesting to observe that, for
any height (H/λ), the wire loss resistance for the resonant
Inverted-L antenna (n = 1) is practically constant.

IX. GROUND PLANE

Previously, it was pointed out that a monopole antenna
is equivalent to a hemispherical surface, where the wave
generator is placed. This hemispherical surface has a radius
of half-wavelength. The corresponding ground plane, where
the conduction currents are flowing, is the circular surface
of the earth soil. This circular surface is half-wavelength in
radius, and it is used to calculate the power dissipated by
the conductive currents due to the finite ground conductivity.
Within this surface, all the ground currents are part of the
antenna electric circuit and, for this reason, this is the area to
be taken into account, and not only the surface occupied by
the artificial ground plane metallic radials.

Therefore, within this half-wavelength radius circular sur-
face there are two zones,

(a) The artificial ground plane zone [15], [16], where the
metallic radials are buried, for the distance ρ varying
in the range 0 ≤ ρ ≤ R0.

(b) The natural ground plane zone, for the distance ρ
varying in the range R0 ≤ ρ ≤ λ/2.

A. Ground Plane Impedance

From the electromagnetic theory, it is well known that a
medium, like the soil, can be a conductor or a dielectric,
depending on the ratio σ/ωε, where σ is the soil conductivity,
ε is the soil permittivity, ω = 2 π f and f is the operation
frequency.

For any non-magnetic medium (µ = µ0) like the earth
soil, the impedance Zs can be calculated from the physical
constants, σ and ε, as follows [4]

Zs = Rs + jXs =

√
jω µ0

σ + jω ε
(60)

This is the impedance of the natural ground plane.
When a star of N conductive radials or ground screen is laid

down into the soil, in order to increase the soil conductivity,
the impedance of this screen is given by [16]

Zr(ρ) = jXr = j 2 f µ0 ρ sin
( π

N

)
ln
[
ρ

π a0
sin
( π

N

)]
(61)

0 ≤ ρ ≤ R0

Where
Zr(ρ) is the screen impedance at the distance ρ from the

antenna base [Ω].
f is the operation frequency [Hz].
ρ is the distance from the star center [m].
N is the number of radials.
a0 is the radius of the radial conductors [m].
R0 is the radius of the star or ground screen [m].

Placing both impedances Zs and Zr in parallel, the artificial
ground plane impedance Zg will be

Zg = Rg + jXg =
Zs Zr

Zs + Zr
(62)

This expression is valid between the star center, at ρ = 0,
and the distance ρ = R0. Beyond this point, the impedance is
that of the natural soil Zs.
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Fig. 15. Ground plane equivalent loss resistance for a resonant
Inverted-L antenna over average ground as a function of the artificial
ground plane radius R0 at 200 kHz, and for different radial numbers.
(n = 1, nc = 1, H = 105 m, Lres = 276.2 m, a = 6 · 10−3 m,
σ = 10−2 S/m, εr = 10).
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Fig. 16. Ground plane equivalent loss resistance for a resonant
Inverted-L antenna over average ground as a function of the artificial
ground plane radius R0 at 1 MHz, and for different radial numbers.
(n = 1, nc = 1, H = 21 m, Lres = 55.46 m, a = 6 · 10−3 m,
σ = 10−2 S/m, εr = 10).

In Figs. 10 and 11 an example of the artificial ground plane
impedance can be seen for the LF band center frequency of
200 kHz.

In Figs. 12 and 13 an example of the artificial ground plane
impedance can be seen for the MF band center frequency of
1 MHz.

It is interesting to note that the artificial ground plane
impedance, Zg = Rg + jXg, is increasing as the distance ρ is
increasing, due to the divergence of the star wires.

B. Ground Plane Power Loss

The antenna currents flowing on the ground plane are
dissipating power, due to the finite soil conductivity or losses.
This dissipated power can be calculated knowing the near
magnetic field H, which is equal to the surface current density
Jsu on the soil.

In Fig. 14 a view of the ground plane used to calculate
the ground plane dissipated power can be seen. The ground
plane dissipating power surface is made up by two surfaces,
the artificial ground plane surface Σg with the buried metallic
radials, and the natural ground plane surface Σ s up to a
distance ρ of half-wavelength.

Thus, the ground plane dissipated power is given by

Wd =
1
2

∫
Σg

| Jsu |2 Rg dσg +
1
2

∫
Σs

| Jsu |2 Rs dσs (63)

Where
Wd is the power dissipated in the ground plane [W].
Jsu is the surface current density [A/m].
Σg is the surface of the artificial ground plane for

0 ≤ ρ ≤ R0.
Rg is the real part of the artificial ground plane impedance

Zg [Ω].
Σs is the surface of the natural ground plane for

R0 ≤ ρ ≤ λ/2.
Rs is the real part of the natural ground plane impedance

Zs [Ω].

The surface current density Jsu is equal to the near magnetic
field Hφ (32) on the artificial and natural ground planes.
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Fig. 17. Ground plane equivalent loss resistance for a resonant Inverted-L
antenna as a function of frequency, for different antenna heights and over
an average ground, for LF band. (n = 1, nc = 1, a = 6 · 10−3 m,
R0 = 0.05λ, N = 30, σ = 10−2 S/m, εr = 10).

Then, taking into account the cylindrical symmetry, the
dissipated power becomes

Wd = π

(∫ R0

0

| Hφ |2 Rg ρ dρ+
∫ λ/2

R0

| Hφ |2 Rs ρ dρ

)
(64)

The first integral is the power dissipated in the artificial
ground plane surface Σg and the second one is the power
dissipated in the natural ground plane surface Σ s.

C. Ground Plane Equivalent Loss Resistance

The ground plane equivalent loss resistance Rgp is necessary
to be known, because it is an important factor in the antenna
electric circuit, and it permits the calculation of the total
equivalent loss resistance Rloss in (9).

The ground plane equivalent loss resistance Rgp is given by
the ratio between the power dissipated in the ground plane and
the square of the antenna effective input current. Therefore,

Rgp =
2 Wd

I20
(65)

Where I0 is the peak value of the antenna input current.
From (64) and (65), it follows that

Rgp =
2π
I20

(∫ R0

0

| Hφ |2 Rg ρ dρ+
∫ λ/2

R0

| Hφ |2 Rs ρ dρ

)
(66)

The first integral cannot be evaluated in closed form, and it
will be resolved numerically. The second one can be evaluated
analytically and is given in Appendix G.

The ground plane equivalent loss resistance Rgp depends
on the antenna height H, the number of radials N, the radius
R0 of the artificial ground plane and the physical constants of
the soil under the antenna.

In Figs. 15 and 16 the ground plane equivalent loss re-
sistance Rgp has been calculated for a resonant Inverted-L
antenna. As an example, this resistance can be seen as a
function of the artificial ground plane radius R0, for different
radial numbers N, at the frequencies of 200 kHz and 1 MHz
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Fig. 18. Ground plane equivalent loss resistance for a resonant Inverted-L
antenna as a function of frequency, for different antenna heights and over
an average ground, for MF band. (n = 1, nc = 1, a = 6 · 10−3 m,
R0 = 0.25λ, N = 120, σ = 10−2 S/m, εr = 10).
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Fig. 19. Ground plane equivalent loss resistance for a resonant Inverted-L
antenna as a function of frequency and for different soil physical conditions.
(n = 1, nc = 1, H = 0.07λ, a = 6 · 10−3 m, R0 = 0.01λ, N = 180).

and over average ground. These frequencies are representative
of the low (150 − 250 kHz) and medium (535 − 1705 kHz)
broadcast AM bands. In these figures, N = 0 corresponds to
the bare soil.

In Figs. 17 and 18 the ground plane equivalent loss resis-
tance Rgp has been calculated for a resonant Inverted-L an-
tenna, as a function of frequency for different antenna heights,
over an average ground, and for the low (150−250 kHz) and
medium (535 − 1705 kHz) frequency bands.

In Fig. 19 the ground plane equivalent loss resistance Rgp

has been calculated for a resonant Inverted-L antenna
(H = 0.07λ), over a very small artificial ground plane
(R0 = 0.01λ), as a function of frequency and for different soil
physical conditions. This is a good representation of the effect
of the soil on the ground plane equivalent loss resistance Rgp

to be included in the antenna equivalent series circuit, when
practically no artificial ground plane is used.

X. RESONANT ANTENNA INPUT RESISTANCE

Antenna input resistance Ra can be calculated as the sum
of the three main antenna resistances, or radiation resistance
Rrad, wire loss resistance Rc and ground plane equivalent loss
resistance Rgp (Ra = Rrad + Rc + Rgp).

In Figs. 20 and 21 the resonant X antenna input resistance
has been calculated for the frequencies of 200 kHz and 1 MHz,
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Fig. 20. Resonant X antenna input resistance as a function of the antenna
height and for different numbers of radials N at 200 kHz. (n = 4, nc = 1,
a = 6 · 10−3 m, R0 = 0.05λ, a0 = 1.5 · 10−3 m, σ = 10−2 S/m,
εr = 10).
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Fig. 21. Resonant X antenna input resistance as a function of the antenna
height and for different numbers of radials N at 1 MHz. (n = 4, nc = 1,
a = 6 · 10−3 m, R0 = 0.25λ, a0 = 1.5 · 10−3 m, σ = 10−2 S/m,
εr = 10).

as a function of the antenna height, for different artificial
ground plane radial numbers and average soil.

In the medium frequency case, the zero radial number result
corresponds to the bare soil. In the low frequency case, the
zero and four radial numbers have practically the same result.

In Fig. 22 an example of the antenna equivalent series
electric circuit can be seen for a resonant X antenna, with a
quarter-wave 120 radials artificial ground plane over average
soil, at a frequency of 1 MHz.

The calculated radiation resistance is Rrad = 7.02 Ω,
conductor resistance Rc = 0.15 Ω, ground plane equivalent
loss resistance Rgp = 0.72 Ω, efficiency η = 0.89, gain
G = 4.26 dBi, an effective current I0ef = 11.3 A and input
voltage V0ef = 88.5 V for an input power Win = 1 kW.

XI. ANTENNA EFFICIENCY AND GAIN

Antenna efficiency η is determined as the ratio between the
antenna radiated power Wrad and the antenna input power
Win. Both powers are calculated using the square of the
antenna effective input current. Therefore,

η =
Wrad

Win
(67)

Then
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Fig. 22. Resonant X antenna equivalent circuit at 1 MHz. (n = 4, nc = 1,
H = 21 m, Lres = 25 m, a = 6 · 10−3 m, R0 = 75 m, N = 120,
a0 = 1.5 · 10−3 m, σ = 10−2 S/m, εr = 10).
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Fig. 23. Resonant X antenna gain as a function of the antenna height and
for several soil conditions at 200 kHz. (n = 4, nc = 1, a = 6 · 10−3 m,
R0 = 75 m, N = 30, a0 = 1.5 · 10−3 m).

η =
Rrad

Ra
(68)

Where Ra = Rrad + Rc + Rgp is the antenna input
resistance, and the insulator equivalent loss resistance R i has
been neglected.

The monopole antenna directivity D depends on the antenna
far field radiation pattern and, in spherical coordinates, it is
defined as

D =
4 πPmax∫ 2π

0 dφ
∫ π/2
0 P(θ, φ) sin θ dθ

(69)

Where P is the antenna radiated power density.
For a short top-loaded antenna, the directivity D is practi-

cally equal to 3 or D = 4.77 dBi (see Appendix D).
The antenna gain G depends on the directivity D and

efficiency η, and it is given by

G = ηD (70)

These antenna efficiency and gain have been calculated for
several top-loaded antennas, for different frequencies and soil

TABLE I

INVERTED-L ANTENNA EFFICIENCY AND GAIN.

f = 200 kHz, H = 105 m, R0 = 75 m, N = 30.

σ εr η G

S/m — — dBi

10−3 4 0.585 2.44

10−2 10 0.743 3.48

3 · 10−2 20 0.789 3.74

5 80 0.897 4.30

TABLE II

T ANTENNA EFFICIENCY AND GAIN.

f = 200 kHz, H = 105 m, R0 = 75 m, N = 30.

σ εr η G

S/m — — dBi

10−3 4 0.594 2.51

10−2 10 0.758 3.57

3 · 10−2 20 0.806 3.84

5 80 0.919 4.41

conditions, in both the low and medium frequency broadcast
bands.

As an example, in Fig. 23 the resonant X antenna gain was
calculated at the frequency of 200 kHz as a function of the
antenna height H/λ and for several soil conditions. In low
frequency band, the artificial ground plane radius R 0 is equal
to 0.05λ (R0 = 75 m at 200 kHz) and the number of radials
is N = 30.

In Table I the resonant Inverted-L antenna efficiency and
gain, for H = 0.07λ, have been calculated at the frequency of
200 kHz and for several soil conditions.

In Table II the resonant T antenna efficiency and gain, for
H = 0.07λ, have been calculated at the frequency of 200 kHz
and for several soil conditions.

In Table III the resonant X antenna efficiency and gain, for
H = 0.07λ, have been calculated at the frequency of 200 kHz
and for several soil conditions.

In Fig. 24 the resonant X antenna gain can be seen as a
function of the antenna height, for different radial numbers N
and over average ground at 200 kHz.

In Fig. 25 a resonant X antenna gain was calculated at the
frequency of 1 MHz as a function of the antenna height H/λ
and for several soil conditions. In medium frequency band, the
artificial ground plane radius R0 is equal to 0.25λ

TABLE III

X ANTENNA EFFICIENCY AND GAIN.

f = 200 kHz, H = 105 m, R0 = 75 m, N = 30.

σ εr η G

S/m — — dBi

10−3 4 0.598 2.54

10−2 10 0.764 3.60

3 · 10−2 20 0.813 3.87

5 80 0.928 4.45
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TABLE IV

INVERTED-L ANTENNA EFFICIENCY AND GAIN.

f = 1.00 MHz, H = 21 m, R0 = 75 m, N = 120.

σ εr η G

S/m — — dBi

10−3 4 0.777 3.67

10−2 10 0.877 4.20

3 · 10−2 20 0.896 4.29

5 80 0.940 4.50

TABLE V

T ANTENNA EFFICIENCY AND GAIN.

f = 1.00 MHz, H = 21 m, R0 = 75 m, N = 120.

σ εr η G

S/m — — dBi

10−3 4 0.784 3.71

10−2 10 0.886 4.25

3 · 10−2 20 0.906 4.34

5 80 0.951 4.55

(R0 = 75 m at 1 MHz) and the number of radials is N = 120.
In Table IV the resonant Inverted-L antenna efficiency and

gain, for H = 0.07λ, have been calculated at the frequency of
1 MHz and for several soil conditions.

In Table V the resonant T antenna efficiency and gain, for
H = 0.07λ, have been calculated at the frequency of 1 MHz
and for several soil conditions.

In Table VI the resonant X antenna efficiency and gain, for
H = 0.07λ, have been calculated at the frequency of 1 MHz
and for several soil conditions.

The small gain increase, in both low and medium frequency
bands, of the T and X antennas compared to the Inverted-L,
is due to the decreased wire loss resistance of the top-load
wires. This wire loss resistance decrease is due to the increase
of the top-load branches n, so the top-load current is divided
accordingly.

It is important to understand that the wire dissipated power
is proportional to the square of the current, so the smaller the
current, the much smaller the wire dissipated power and the
wire loss resistance.

The relative smaller gain of the top-loaded antenna in the
low frequency band, compared to the medium frequency band,
is due to the better artificial ground plane used in the latter.

In Fig. 26 the resonant X antenna gain can be seen as a

TABLE VI

X ANTENNA EFFICIENCY AND GAIN.

f = 1.00 MHz, H = 21 m, R0 = 75 m, N = 120.

σ εr η G

S/m — — dBi

10−3 4 0.787 3.73

10−2 10 0.890 4.26

3 · 10−2 20 0.909 4.36

5 80 0.955 4.57
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Fig. 24. Resonant X antenna gain as a function of the antenna height, for
different numbers of radials N and over average ground at 200 kHz. (n = 4,
nc = 1, a = 6 ·10−3 m, R0 = 75 m, a0 = 1.5 ·10−3 m, σ = 10−2 S/m,
εr = 10).
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Fig. 25. Resonant X antenna gain as a function of the antenna height and
for several soil conditions at 1 MHz. (n = 4, nc = 1, a = 6 · 10−3 m,
R0 = 75 m, N = 120, a0 = 1.5 · 10−3 m).

function of the antenna height and for different radial numbers
N, over average ground at 1 MHz.

In low frequency band (150−250 kHz), resonant X antenna
gain has been calculated as a function of number and length
of radials, as it can be seen in Tables VII, VIII and IX for
different soil conditions. This gain is quite similar (within
0.5 dB) in the cases of the Inverted-L and T antennas, and
these tables can be taken as a good reference.

In the case of dry soil (σ = 10−3 S/m, εr = 4), it can be
seen a gain increase of around 1 dB changing the artificial
ground plane from R0 = 0.05λ and N = 30 to R0 = 0.15λ
and N = 120.

It can be appreciated from these calculations that the in-
crease of the antenna gain is around 0.5 dB increasing the
ground plane from R0 = 0.05λ and N = 30 to R0 = 0.15λ
and N = 120 for an average soil (σ = 10−2 S/m, εr = 10).

In the case of wet soil (σ = 3 · 10−2 S/m, εr = 20),
the improvement in gain is less than 0.5 dB increasing the
ground plane in the same manner. In these last cases, the gain
improvement is quite small and it possibly does not pay the
investment in labor and materials, and it must carefully be
analyzed.

In medium frequency band (535 − 1705 kHz), resonant X
antenna gain has been calculated as a function of number N
and length of radials R0, as it can be seen in Tables X, XI
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Fig. 26. Resonant X antenna gain as a function of the antenna height, for
different numbers of radials N and over average ground at 1 MHz. (n = 4,
nc = 1, a = 6 ·10−3 m, R0 = 75 m, a0 = 1.5 ·10−3 m, σ = 10−2 S/m,
εr = 10).

TABLE VII

X ANTENNA GAIN G [dBi].

f = 200 kHz, H = 105 m, σ = 10−3 S/m, εr = 4.

R0/λ N = 4 N = 8 N = 30 N = 60 N = 120 N = 180

0.01 0.49 0.63 0.71 0.71 0.71 0.71

0.05 1.21 1.77 2.54 2.67 2.71 2.72

0.10 1.29 1.92 3.03 3.34 3.46 3.49

0.15 1.30 1.96 3.18 3.57 3.76 3.81

0.20 1.31 1.97 3.24 3.69 3.92 3.99

0.25 1.31 1.98 3.28 3.75 4.03 4.11

0.50 1.32 1.99 3.33 3.88 4.24 4.38

TABLE VIII

X ANTENNA GAIN G [dBi].

f = 200 kHz, H = 105 m, σ = 10−2 S/m, εr = 10.

R0/λ N = 4 N = 8 N = 30 N = 60 N = 120 N = 180

0.01 2.59 2.77 2.95 2.97 2.97 2.97

0.05 2.73 3.04 3.60 3.78 3.87 3.89

0.10 2.74 3.06 3.69 3.95 4.11 4.16

0.15 2.74 3.06 3.72 3.99 4.18 4.25

0.20 2.75 3.07 3.72 4.01 4.22 4.29

0.25 2.75 3.07 3.73 4.02 4.23 4.32

0.50 2.75 3.07 3.73 4.03 4.26 4.36

TABLE IX

X ANTENNA GAIN G [dBi].

f = 200 kHz, H = 105 m, σ = 3 · 10−2 S/m, εr = 20.

R0/λ N = 4 N = 8 N = 30 N = 60 N = 120 N = 180

0.01 3.20 3.35 3.54 3.57 3.58 3.58

0.05 3.26 3.46 3.87 4.03 4.12 4.15

0.10 3.26 3.47 3.91 4.10 4.24 4.29

0.15 3.26 3.47 3.91 4.12 4.27 4.33

0.20 3.26 3.48 3.92 4.12 4.28 4.35

0.25 3.26 3.48 3.92 4.13 4.29 4.36

0.50 3.26 3.48 3.92 4.13 4.30 4.38

TABLE X

X ANTENNA GAIN G [dBi].

f = 1 MHz, H = 21 m, σ = 10−3 S/m, εr = 4.

R0/λ N = 4 N = 8 N = 30 N = 60 N = 120 N = 180

0.01 -1.92 -1.87 -1.85 -1.85 -1.85 -1.85

0.05 -0.10 0.50 1.01 1.05 1.06 1.07

0.10 0.19 1.08 2.21 2.37 2.42 2.42

0.15 0.26 1.23 2.69 2.97 3.06 3.08

0.20 0.29 1.29 2.93 3.32 3.45 3.48

0.25 0.30 1.32 3.08 3.55 3.73 3.77

0.50 0.32 1.37 3.37 4.07 4.47 4.58

TABLE XI

X ANTENNA GAIN G [dBi].

f = 1 MHz, H = 21 m, σ = 10−2 S/m, εr = 10.

R0/λ N = 4 N = 8 N = 30 N = 60 N = 120 N = 180

0.01 1.36 1.50 1.57 1.58 1.58 1.58

0.05 1.93 2.41 3.09 3.21 3.25 3.26

0.10 1.98 2.52 3.47 3.73 3.84 3.86

0.15 1.99 2.55 3.57 3.91 4.07 4.11

0.20 1.99 2.55 3.62 3.99 4.19 4.25

0.25 2.00 2.56 3.64 4.04 4.26 4.33

0.50 2.00 2.57 3.68 4.12 4.42 4.53

and XII for different soil conditions.
It can be appreciated from these calculations that the in-

crease of the antenna gain is less than 1 dB increasing the
ground plane from R0 = 0.25λ and N = 30 to R0 = 0.25λ
and N = 120 for dry soil (σ = 10−3 S/m, εr = 4).

From N = 60 to N = 120 (R0 = 0.25λ), the increase
in gain is very small, around 0.2 dB for every soil and, for
this reason, the 120 radial case can be considered an optimum
artificial ground plane, especially for frequencies higher than
1 MHz.

Also, from these tables, an increase in the artificial ground
plane radius R0 more than 0.25λ is really not necessary, as it
can be appreciated, due to a very small increase in gain, less
than 0.5 dB. The same can be said for an increase in radial
number from N = 120 to N = 180.

In the case of very dry soil, it must be used the largest
artificial ground plane as possible or maximum radius R0 and
number of radials N, taking into account that the antenna

TABLE XII

X ANTENNA GAIN G [dBi].

f = 1 MHz, H = 21 m, σ = 3 · 10−2 S/m, εr = 20.

R0/λ N = 4 N = 8 N = 30 N = 60 N = 120 N = 180

0.01 2.36 2.52 2.64 2.65 2.65 2.65

0.05 2.62 2.99 3.59 3.74 3.79 3.80

0.10 2.64 3.03 3.76 4.02 4.15 4.18

0.15 2.65 3.04 3.81 4.10 4.27 4.32

0.20 2.65 3.04 3.82 4.13 4.32 4.39

0.25 2.65 3.05 3.83 4.15 4.36 4.43

0.50 2.65 3.05 3.85 4.18 4.42 4.52
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Fig. 27. Resonant Inverted-L antenna bandwidth as a function of the antenna
height and for different soil conditions at 200 kHz. (n = 1, nc = 1,
a = 6 · 10−3 m, R0 = 0.05λ, N = 30, a0 = 1.5 · 10−3 m).
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Fig. 28. Resonant T antenna bandwidth as a function of the antenna height
and for different soil conditions at 200 kHz. (n = 2, nc = 1, a = 6·10−3 m,
R0 = 0.05λ, N = 30, a0 = 1.5 · 10−3 m).

ground plane currents are reaching a maximum distance of
half-wavelength. This is not so important for high conductivity
soils, because the increase in gain is very small from the
optimum artificial ground plane.

XII. ANTENNA BANDWIDTH

The antenna bandwidth is defined according to a maximum
value of the reflection coefficient Γmax or maximum standing
wave ratio (VSWR) presented by the antenna input impedance
within the bandpass band, with respect to the antenna input
resistance at the center frequency f0.

Due to the small variation in the antenna input resistance
within the bandpass band, the antenna input reactance is
responsible of the antenna bandwidth and, for this reason, its
variation must carefully be taken under control. This input
reactance is a function of the top-load type and operation
frequency. The lower the frequency, the greater the input reac-
tance variation, and more difficult is to achieve the necessary
bandwidth for a broadcast transmission.

For a high fidelity AM transmission, a bandwidth of
±10 kHz minimum is necessary, and for a VSWR less than
1.25 should be the ideal.

This is a very difficult task to be achieved, especially in the
low frequency band. Bandwidth calculations have been carried
out for different top-loaded antennas, in both low and medium
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Fig. 29. Resonant X antenna bandwidth as a function of the antenna height
and for different soil conditions at 200 kHz. (n = 4, nc = 1, a = 6·10−3 m,
R0 = 0.05λ, N = 30, a0 = 1.5 · 10−3 m).
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Fig. 30. Resonant Inverted-L antenna bandwidth as a function of the
antenna height and for different soil conditions at 1 MHz. (n = 1, nc = 1,
a = 6 · 10−3 m, R0 = 0.25λ, N = 120, a0 = 1.5 · 10−3 m).

frequency bands, in order to determine if their behavior is
compatible with the previous task. For this reason, bandwidth
calculations for VSWR of 1.25, 1.50 and 2.00 have been
carried out on each band.

In the low frequency band (150 − 250 kHz), the antenna
bandwidths calculated at 200 kHz for the Inverted-L, T and X
antennas and for different soil conditions can be seen in Figs.
27, 28 and 29.

Clearly, the antenna impedance is very sharp and the VSWR
is very high at the specified bandwidth of ±10 kHz. This
problem does not permit a high fidelity transmission, but only
speech transmissions. At the same time, it can be seen that
the best result is obtained using the X antenna, because an
improved bandwidth is obtained compared to the L and T
antenna types. Using a top-load with more branches, like an
8-Star antenna, the bandwidth is quite similar to the X antenna,
and it does not pay the investment in wiring and support
towers.

In the medium frequency band (535 − 1705 kHz), the
antenna bandwidths calculated at 1 MHz for the Inverted-L
and T antennas and for different soil conditions can be seen
in Figs. 30 and 31.

From these figures, an improved bandwidth has been
achieved compared to the low frequency band behavior of
these antennas, nevertheless, for a low VSWR operation the
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Fig. 31. Resonant T antenna bandwidth as a function of the antenna height
and for different soil conditions at 1 MHz. (n = 2, nc = 1, a = 6 · 10−3 m,
R0 = 0.25λ, N = 120, a0 = 1.5 · 10−3 m).
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Fig. 32. Resonant X antenna bandwidth as a function of the antenna height
and for different soil conditions at 550 kHz. (n = 4, nc = 1, a = 6·10−3 m,
R0 = 0.25λ, N = 120, a0 = 1.5 · 10−3 m).

antenna impedance is still quite sharp. For the Inverted-L
antenna, it can be seen that a bandwidth of ±5 kHz is achieved
for a VSWR of 1.5 and, in the T antenna case, a bandwidth
of ±8 kHz is achieved for the same VSWR, for H = 0.08λ.

From previous calculations, the X antenna has an improved
bandwidth compared to both the Inverted-L and T antennas.
For this reason, the X antenna bandwidth was calculated, and
it is shown in Figs. 32, 33 and 34, for 550 kHz, 1 MHz and
1.7 MHz, respectively.

Clearly, the X antenna has a bandwidth of ±10 kHz for
a VSWR of 1.5 at the frequency of 1 MHz, for an antenna
height close to 0.08λ. Of course, it is sharper at 550 kHz and
it has a wider bandwidth at 1.7 MHz, exceeding the required
±10 kHz, as it can be appreciated in the figures.

According to these results, care must be taken in order
to choose these antennas for a high fidelity operation, espe-
cially taking into account the frequency within the medium
frequency AM band, because, in the lower part, the required
±10 kHz bandwidth is difficult to be obtained for a very low
VSWR operation.

This problem can be attenuated choosing a higher antenna,
because the antenna bandwidth can be improved increasing
the antenna height. This problem can be very difficult to be
solved if the antenna height is lower than 0.07λ, especially in
the lower part of the medium frequency band. In the upper
part, even an antenna height close to 0.05λ can be used with
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Fig. 33. Resonant X antenna bandwidth as a function of the antenna height
and for different soil conditions at 1 MHz. (n = 4, nc = 1, a = 6 · 10−3 m,
R0 = 0.25λ, N = 120, a0 = 1.5 · 10−3 m).
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Fig. 34. Resonant X antenna bandwidth as a function of the antenna height
and for different soil conditions at 1.7 MHz. (n = 4, nc = 1, a = 6·10−3 m,
R0 = 0.25λ, N = 120, a0 = 1.5 · 10−3 m).

a good bandwidth, but the antenna gain can suffer due to a
low radiation resistance, especially for dry soils.

In a low budget case and in the upper part of the band, the
Inverted-L and T antennas can be used, because in this part
of the band they can offer enough bandwidth for a moderate
broadcast operation.

XIII. TOP-LOAD TIP VOLTAGE

The top-load tip voltage VL (28) has been calculated for
the resonant Inverted-L (n = 1), T (n = 2), X (n = 4) and
8-Star (n = 8) antennas. This knowledge is very important in
order to design the supporting insulators, especially when the
antenna has to work with high power.

In Figs. 35 and 36 the tip effective voltage can be seen as
a function of the antenna height, for an antenna input power
of 1 kW and for average soil. The tip voltage calculation
requires the knowledge of the antenna equivalent circuit,
whose components permit the antenna current determination.

This voltage is very high in the case of the Inverted-L
antenna and for the lower antenna heights. At the same time,
it can be seen that this voltage is smaller as the branches of
the top-load are increasing. When the antenna height is close
to 0.1λ, this voltage is quite similar for any type of loading.

For an X antenna, the tip voltage is moderate and almost
independent of the antenna height for heights higher than
0.04λ.
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Fig. 35. Top-load tip effective voltage for resonant top-loaded antennas as
a function of the antenna height at 200 kHz. (nc = 1, a = 6 · 10−3 m,
R0 = 0.05λ, N = 30, a0 = 1.5 · 10−3 m, σ = 10−2 S/m, εr = 10).
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Fig. 36. Top-load tip effective voltage for resonant top-loaded antennas as
a function of the antenna height at 1 MHz. (nc = 1, a = 6 · 10−3 m,
R0 = 0.25λ, N = 120, a0 = 1.5 · 10−3 m, σ = 10−2 S/m, εr = 10).

XIV. ANTENNA WIRING

Low and medium frequency top-loaded antennas are made
up of metallic wiring and, for achieving the antenna resonance
for a given height, the top-load wire length L must be varied
to a value of Lres (12).

In Fig. 37 the antenna total length Htot = H + n Lres value
for the Inverted-L (n = 1), T (n = 2), X (n = 4) and 8-Star
(n = 8) antennas is presented as a function of the antenna
height (H/λ) calculated at 1 MHz.

This figure shows that the Inverted-L antenna is using
the minimum top-load length Lres, compared to the other
antenna types. At the same time, it is interesting to see that,
approximately, a quarter-wave total wire length H tot is needed
for this antenna to achieve the resonance condition, and this
effect occurs for any antenna height. This result is practically
the same for any frequency expressing the dimensions in
wavelengths, and the small difference is due to the equivalent
transmission lines characteristic impedance ratio Z0t/Z0m, as
it is indicated in (12).

This effect is exclusive for the resonant Inverted-L
antenna and it does not occur for the other antenna types.

XV. GAIN AND FIELD STRENGTH

The antenna community is using the term antenna gain G
with a reference to an isotropic source. This term is expressed
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Fig. 37. Resonant top-loaded antenna total length (Htot = H + nLres) as
a function of the antenna height, for different top-load branches n at 1 MHz.

in times or dBi, and it is independent of the distance. Electric
field strength is a magnitude that depends on the distance and,
for this reason, a reference distance is of common use.

This reference distance is generally chosen to be 1 km
and field strength E is expressed in mV/m or dBµV/m for
an antenna input power of 1 kW. Usually, this distance is
assumed to be adequate for analyzing a radiated field, free of
induction effects. This is almost true for the medium frequency
band, where 1 km is a distance close to 1.8 wavelengths at
the band lowest frequency.

Nevertheless, a distance of 1 km is half-wavelength at
150 kHz.

In this latter case, this distance should be increased to higher
values, at least to 5 km, in order to measure an actual radiating
field free of any induction component.

In Table XIII antenna gains are indicated and the unatten-
uated E-field strength values are presented at the distance of
1 km for an antenna input power of 1 kW .

XVI. CONCLUSION

Top-loaded antennas have been analyzed. From this analy-
sis, it is pointed out the following:

• Efficiency could be very high when the antenna height is
higher than 0.07λ and with an artificial ground plane of
0.25λ and 120 radials in medium frequency band. Field
strength will be close to a quarter-wave monopole case. In
low frequency band, an optimum artificial ground plane
is achieved with a radius of 0.1λ and 30 or 60 radials.

• Radiation resistance is not only a function of the antenna
height, but a function of the top-base current relationship
too.

• Radiation pattern is found to be a complicated mathe-
matical function of the zenith angle θ. In the case of
a very short top-loaded antenna, this function reduces
to a simple sin θ (see (116) in Appendix C). As a
consequence, the directivity is a little bit greater than
4.77 dBi (see Appendix D).

• Inverted-L antenna has been found to have the minimum
wiring in order to achieve the self-resonance. It was
found that the wire total length (Htot) is independent
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TABLE XIII

ANTENNA GAIN AND E-FIELD STRENGTH

G G E E

dBi — mV/m dBµV/m

5.0 3.16 307.9 109.76

4.8 3.02 301.0 109.57

4.6 2.88 294.0 109.37

4.4 2.75 287.2 109.16

4.2 2.63 280.9 108.97

4.0 2.51 274.4 108.77

3.8 2.40 268.3 108.57

3.6 2.29 262.1 108.37

3.4 2.19 256.3 108.18

3.2 2.09 250.4 107.97

3.0 2.00 244.9 107.78

2.8 1.90 238.7 107.56

2.6 1.82 233.7 107.37

2.4 1.74 228.5 107.18

2.2 1.66 223.2 106.97

2.0 1.58 217.7 106.76

1.8 1.51 212.8 106.56

1.6 1.45 208.6 106.38

1.4 1.38 203.5 106.17

1.2 1.32 199.0 105.98

1.0 1.26 194.4 105.77

of the antenna height. Unfortunately, this antenna has the
minimum bandwidth compared to the other top-loaded
antennas, so this effect must be taken into account before
choosing the right antenna model.
This antenna can advantageously be used for other ser-
vices when the bandwidth is not a constraint, due to its
simple construction.

• Wire loss resistance depends on the top-load type and on
the current distribution along the antenna wiring.

• Separation between radiated and dissipated power is a
very difficult task. For these reason, these calculations
have a logical limitation, due to the use of a hemispherical
surface half-wavelength in radius for the ground plane
power dissipation. However, measurements indicate that
very good results are obtained from this approach.

• Ground plane equivalent loss resistance is not only a
function of the lengths and number of radials and soil
constants, but it is a function of the antenna height too.

• Antenna bandwidth is highly dependent on the antenna
type and on the operation frequency. An important band-
width increase can be achieved using an X antenna type,
instead of an Inverted-L or T. Increasing the top-load
branches more than four, the increase in bandwidth is
quite small, and the antenna complexity is going to be
very high.
In the low frequency band, bandwidth is quite scarce for
any top-loaded antenna type and must carefully be evalu-
ated in order to obtain a good quality speech transmission.
In this band, this kind of antennas is practically the only
choice, due to the antenna size.

In the medium frequency band low end, it is quite difficult
to obtain a high fidelity bandwidth. This antenna property
improves with the frequency and, in the upper end of this
band, even an Inverted-L or T type can give the necessary
bandwidth for a broadcast high fidelity transmission.

• Ground plane must carefully be chosen in order to get an
optimum performance, and it must be free of obstacles
up to a half-wavelength radius for several reasons:

(a) For an optimum antenna operation.
(b) For personnel protection, due to the high inten-

sity fields close to the antenna when the input
power is higher than 1 kW.

(c) A short antenna does not mean that it can
be installed in the small plot surrounded by
obstacles, because its performance can suffer
notably and, for this reason, the transmitting
house must be installed at a minimum distance
of half-wavelength away from the antenna place.

(d) These conditions must be fulfilled.

APPENDIX A
CURRENT AND VOLTAGE DISTRIBUTIONS

For the antenna vertical wire, it is well known that the
current and voltage distributions along a low loss transmission
line, of characteristic impedance Z0m, are given by [8]

I(z) = I0 cosβz − j
V0

Z0m
sinβz (71)

V(z) = V0 cosβz − j I0 Z0m sinβz (72)

0 ≤ z ≤ H

Where I0 and V0 are the antenna input current and voltage.

V0 = jXa I0 (73)

I(z) = I0

(
cosβz +

Xa

Z0m
sinβz

)
(74)

V(z) = j I0 (Xa cosβz − Z0m sinβz) (75)

0 ≤ z ≤ H

At the antenna top, z = H,

It
I0

=
I(z = H)

I0
= cosβH +

Xa

Z0m
sinβH (76)

Vt = V(z = H) = j I0 (Xa cosβH − Z0m sinβH) (77)

The current and voltage distributions on the top-load,
considered as a low loss transmission line, of characteristic
impedance Z0t, will be [8]

I(ρ) =
It
n

cosβρ− j
Vt

Z0t
sinβρ (78)
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V(ρ) = Vt cosβρ− j
It
n

Z0t sinβρ (79)

0 ≤ ρ ≤ L

Where It and Vt are the antenna top current and voltage.

Vt = jXt It (80)

Taking into account (5), it follows that

I(ρ) =
It
n

(
cosβρ− sinβρ

tanβL

)
(81)

V(ρ) = j It

(
Xt cosβρ− Z0t

n
sinβρ

)
(82)

0 ≤ ρ ≤ L

At the top-load wire tip,

IL = I(ρ = L) = 0 (83)

VL = V(ρ = L) = j It

(
Xt cosβL − Z0t

n
sinβL

)
(84)

If the antenna is resonant, Xa = 0, then

I(z) = I0 cosβz (85)

V(z) = −j I0 Z0m sinβz (86)

0 ≤ z ≤ H

It
I0

= cosβH (87)

Vt = −j I0 Z0m sinβH (88)

I(ρ) =
It
n

(
cosβρ− sinβρ

tanβLres

)
(89)

V(ρ) = −j I0 cosβH
(

Z0m tanβH cosβρ+
Z0t

n
sinβρ

)
(90)

0 ≤ ρ ≤ Lres

IL = 0 (91)

VL = −j I0
Z0t cosβH
n sinβLres

(92)

APPENDIX B
NEAR FIELD

Near fields will be calculated in cylindrical coordinates,
according to Fig. 4. Therefore,

R2 = (z − z′)2 + ρ2 (93)

r21 = (z − H)2 + ρ2 (94)

r22 = (z + H)2 + ρ2 (95)

r2 = z2 + ρ2 (96)

The magnetic vector potential in free space, according to the
current distribution along the z-axis, has only one component
in the z-direction, that is

Az =
µ0

4 π

∫ H

−H

I(z′)
e−jβR

R
dz′ (97)

Making a variable change, the current distribution in (74)
becomes

I(z) =
{

Im sin (ψ+ + βz) for − H ≤ z ≤ 0
−Im sin (ψ− − βz) for 0 ≤ z ≤ H (98)

Where

Im = I0

√
1 +

(
Xa

Z0m

)2

(99)

ψ = arctan
(

Xa

Z0m

)
(100)

ψ± = ψ ± π

2
(101)

Thus,

Az =
µ0 Im
4 π

[ ∫ 0

−H

sin (ψ+ + βz′)
e−jβR

R
dz′ (102)

−
∫ H

0

sin (ψ− − βz′)
e−jβR

R
dz′
]

or

Az = j
µ0 Im
8 π

[
ejψ−

∫ H

0

e−jβ(R+z′)

R
dz′ (103)

− e−jψ−
∫ H

0

e−jβ(R−z′)

R
dz′

− ejψ+
∫ 0

−H

e−jβ(R−z′)

R
dz′

+ e−jψ+
∫ 0

−H

e−jβ(R+z′)

R
dz′
]

Then, the magnetic and electric fields are given by
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Hφ = − 1
µ0

∂Az

∂ρ
(104)

Ez = − j
ω ε0

1
ρ

∂(ρHφ)
∂ρ

(105)

Following the same procedure as Jordan [4] and for z = 0,
it follows that

Hφ = − Im
4 π ρ

{
ejψ

[(
1 − H

r1

)
e−jβ(r1+H) − e−jβρ

]
(106)

− e−jψ

[(
1 +

H
r1

)
e−jβ(r1−H) − e−jβρ

]}

Ez =
j Im

4 π ε0 ω ρ

{
ejψ

[
ρ e−jβ(r1+H)

r1

(
H
r21

− jβ
(
1 − H

r1

))
(107)

+jβ e−jβρ

]

− e−jψ

[
− ρ e−jβ(r1−H)

r1

(
H
r21

+ jβ
(
1 +

H
r1

))

+jβ e−jβρ

]}

At resonance, Xa = 0, so Im = I0 and ψ = 0, then the
magnetic and electric fields, for z = 0, will be

Hφ =
I0
2 π

e−jβr1

ρ

(
H
r1

cosβH + j sinβH
)

(108)

Ez =
j I0 e−jβr1

2 π ε0 ω

(
H cosβH

r31
+

jβH cosβH
r21

− β sinβH
r1

)
(109)

The magnetic field expression is exactly the same obtained
by Wait and Surtees [11] by means of a different approach,
assuming a sinusoidal antenna current distribution. In this
presentation, the current distribution has been obtained by
means of an equivalent transmission line model. In this case,
the maximum current Im in (99) depends on the antenna
reactance Xa and is going to be I0 when the antenna is
resonant (Xa = 0), while the ψ parameter in (100) is going
to be zero.

APPENDIX C
FAR FIELD

The far fields can be obtained from (104) and (105) using
the transformation from cylindrical to spherical coordinates.
Therefore, 


ρ = r sin θ
φ = φ
z = r cos θ

(110)

Also, the following approximations can be applied:

r1 ∼= r − H cos θ (111)

r2 ∼= r + H cos θ (112)

Then, the far magnetic and electric fields, in the upper
hemisphere (0 ≤ θ ≤ π/2), are given by

Hφ = j
Im
2 π

e−jβr

r
fψ(θ) (113)

Eθ = jZ00
Im
2 π

e−jβr

r
fψ(θ) (114)

Where

fψ(θ) =
sin (βH − ψ) cos (βHcos θ)

sin θ
(115)

+
sinψ − cos (βH − ψ) cos θ sin (βHcos θ)

sin θ
is the top-loaded monopole antenna field radiation pat-

tern, Z00 = 377 Ω is the free space intrinsic impedance, Im

is given by (99) and ψ by (100).

At resonance, Xa = 0, so Im = I0 and ψ = 0, then
the resonant top-loaded monopole antenna field radiation
pattern is given by

f0(θ) =
sinβHcos (βHcos θ) − cosβH cos θ sin (βHcos θ)

sin θ
(116)

In the case of a very short top-loaded antenna, βH � 1 in
(116), then the far magnetic and electric fields are exactly the
same of the Hertz monopole. Therefore,

Hφ = j
βHI0
2 π

e−jβr

r
sin θ (117)

Eθ = jZ00
βHI0
2 π

e−jβr

r
sin θ (118)

Where

f(θ) = sin θ (119)

is the Hertz monopole field radiation pattern.

If θ = π/2, then r = ρ, z = 0 and f0(π/2) = sinβH. Thus,
the far magnetic and electric fields on the earth surface, for
any resonant top-loaded antenna, become

Hφ = j
I0
2 π

e−jβρ

ρ
sinβH (120)

Eθ = jZ00
I0
2 π

e−jβρ

ρ
sinβH (121)

Since Ez = −Eθ for z = 0, it follows that the z-component
of the far electric field on the earth surface becomes
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Ez = −j Z00
I0
2 π

e−jβρ

ρ
sinβH (122)

APPENDIX D
DIRECTIVITY

The antenna directivity D can be expressed as

D =
4 π
B

(123)

Where

B =
∫ 2π

0

dφ
∫ π/2

0

P(θ, φ)
Pmax

sin θ dθ (124)

is the beam area, P(θ, φ) is the power density and Pmax

its maximum value. When the antenna beam has cylindrical
symmetry, the power density is only a function of the zenith
angle θ, so P(θ, φ) = P(θ).

For a resonant top-loaded antenna,

P(θ)
Pmax

=
f20 (θ)

f20 (π/2)
(125)

Where f0(θ) is the resonant top-loaded antenna field radia-
tion pattern in (116).

The integration in (124) can be carried out to give

B =
π

2 sin2 βH

[
sin 4βH

4βH
+

sin 2βH
2βH

(126)

− cos 2βH − 1 + Cin(4βH)

]

Where

Cin(4βH) =
∫ 4βH

0

1 − cos u
u

du (127)

In Table XIV the resonant top-loaded antenna directivity
has been calculated as a function of the antenna height (H/λ).
Exact results are very close to the Hertz monopole directivity
of 4.77 dBi within 0.1 dB.

APPENDIX E
RADIATION RESISTANCE

Radiation resistance is defined as [5]

Rrad =
2 Wrad

I20
(128)

Where Wrad is the power radiated into space by the top-
loaded antenna, and I0 is the peak value of the antenna input
current.

Following the standard procedure [5], the radiation resis-
tance of a resonant top-loaded antenna will be

Rrad = 60
∫ π/2

0

f20 (θ) sin θ dθ (129)

TABLE XIV

RESONANT TOP-LOADED ANTENNA DIRECTIVITY.

H/λ D D

— — dBi

0.010 3.0008 4.7724

0.015 3.0018 4.7738

0.020 3.0032 4.7758

0.025 3.0049 4.7783

0.030 3.0071 4.7814

0.035 3.0096 4.7851

0.040 3.0125 4.7893

0.045 3.0158 4.7941

0.050 3.0195 4.7993

0.055 3.0235 4.8051

0.060 3.0279 4.8114

0.065 3.0327 4.8182

0.070 3.0377 4.8255

0.075 3.0432 4.8332

0.080 3.0489 4.8414

0.085 3.0549 4.8500

0.090 3.0613 4.8591

0.095 3.0680 4.8685

0.100 3.0749 4.8783

Where f0(θ) is the resonant top-loaded antenna field radia-
tion pattern in (116).

The integration can be performed analytically to give

Rrad = 15
[
sin 4βH

4βH
+

sin 2βH
2βH

− cos 2βH − 1 + Cin(4βH)
]

(130)
Where the Cin function is given by (127).
In Table XV the resonant top-loaded antenna radiation

resistance has been calculated using the exact expression
(130), the approximate equation (54), where the top to base
current ratio It/I0 = cosβH is taken into account, and the
Hertz monopole radiation resistance (44), where I t/I0 = 1.

It can be seen that the Hertz monopole expression (44) can
only be used for antenna heights less than 0.04λ, while the
approximate expression (54) is valid up to 0.1λ with an error
less than 5%.

APPENDIX F
WIRE LOSS RESISTANCE

It was shown in Section VIII that the wire loss resistance
for a resonant antenna is given by

Rc =
Rl

I20

(∫ H

0

I2(z) dz + n
∫ Lres

0

I2(ρ) dρ

)
(131)

Where

Rl =
1
a

√
f µ0

4 π σc
(132)

and



22

TABLE XV

RESONANT TOP-LOADED ANTENNA RADIATION RESISTANCE.

H/λ Exact Approx. Hertz

— Ω Ω Ω

0.010 0.15766 0.15760 0.15791

0.015 0.35405 0.35373 0.35531

0.020 0.62768 0.62668 0.63165

0.025 0.97727 0.97485 0.98696

0.030 1.40120 1.39620 1.42120

0.035 1.89740 1.88810 1.93440

0.040 2.46360 2.44790 2.52660

0.045 3.09710 3.07200 3.19780

0.050 3.79500 3.75700 3.94780

0.055 4.55400 4.49870 4.77690

0.060 5.37070 5.29270 5.68490

0.065 6.24110 6.13440 6.67190

0.070 7.16140 7.01890 7.73780

0.075 8.12740 7.94090 8.88260

0.080 9.13460 8.89500 10.1060

0.085 10.1780 9.87570 11.4090

0.090 11.2540 10.8770 12.7910

0.095 12.3580 11.8940 14.2520

0.100 13.4830 12.9190 15.7910

I(z) = I0 cosβz 0 ≤ z ≤ H (133)

I(ρ) =
I0 cosβH

n

(
cosβρ− sinβρ

tanβLres

)
(134)

0 ≤ ρ ≤ Lres

Both integrations in (131) can be carried out to give∫ H

0

I2(z) dz =
I20
2

(
H +

sin 2βH
2 β

)
(135)

and

∫ H

0

I2(ρ) dρ =
I20 cos2 βH

n2

[
Lres

2

(
1 +

1
tan2 βLres

)
(136)

+
sin 2βLres

4 β

(
1 − 1

tan2 βLres

)
+

cos 2βLres − 1
2 β tanβLres

]

Therefore,

Rc = Rl

{
1
2

(
H +

sin 2βH
2 β

)
(137)

+
cos2 βH

n

[
Lres

2

(
1 +

1
tan2 βLres

)

+
sin 2βLres

4 β

(
1 − 1

tan2 βLres

)
+

cos 2βLres − 1
2 β tanβLres

]}

APPENDIX G
GROUND PLANE EQUIVALENT LOSS RESISTANCE

In Section IX, the ground plane equivalent loss resistance
was obtained as

Rgp =
2π
I20

(∫ R0

0

| Hφ |2 Rg ρ dρ+
∫ λ/2

R0

| Hφ |2 Rs ρ dρ

)
(138)

Where
Hφ is the near magnetic field given by (108) [A/m].
Rg is the artificial ground plane resistance at the operation

frequency, given by (62) [Ω].
Rs is the soil resistance at the operation frequency, given

by (60) [Ω].

The first integral is calculated numerically, thus

2π
I20

∫ R0

0

| Hφ |2 Rg ρ dρ ∼= 2π
I20

i=K∑
i=1

| Hφ(ρi) |2 Rg(ρi) ρi wi

(139)
Where {wi} are the weights of an adaptive Gauss-Lobatto

quadrature rule.
The second integration can be carried out to give

2π
I20

∫ λ/2

R0

| Hφ |2 Rs ρ dρ = (140)

Rs

2 π

{
ln


 λ

R0

√
R2

0 + H2

λ2 + 4 H2


 cos2 βH

+ ln
(

λ

2 R0

)
sin2 βH

}

APPENDIX H
GLOSSARY OF SYMBOLS

a Radius of the antenna wires [m].
A Magnetic vector potential [Wb/m].
a0 Radius of wire used in artificial ground plane [m].
B Radiation pattern beam area.
Ct Top capacitance of a top-loaded antenna [F].
D Antenna directivity.
η Antenna efficiency.
E Electric field intensity [V/m].
εr Soil relative permittivity.
f0(θ) Resonant top-loaded antenna field radiation pattern.
fψ(θ) Top-loaded antenna field radiation pattern.
G Antenna gain.
H Magnetic field intensity [A/m].
H Antenna height [m].
I0 Peak value of the antenna input current [A].
I(ρ) Current distribution on the antenna top-load [A].
It Peak value of the antenna top current [A].
I(z) Current distribution on the antenna vertical part [A].
j

√−1 imaginary unit.
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Jsu Ground plane surface current density [A/m].
L Antenna top-load length [m].
Lres Resonant antenna top-load length [m].
n Number of top-load branches.
nc Number of wires in each equivalent transmission

line.
N Number of radials.
P Radiated power density [W/m2].
Q Antenna merit factor.
ρ Radial distance from the antenna base [m].
R0 Artificial ground plane radius [m].
Ra Antenna input resistance [Ω].
Rc Wire loss resistance [Ω].
Rg Artificial ground plane resistance [Ω].
Rgp Ground plane equivalent loss resistance [Ω].
Ri Insulator equivalent loss resistance [Ω].
Rl Wire resistance per unit length [Ω/m].
Rrad Antenna radiation resistance [Ω].
Rs Soil resistance [Ω].
σ Soil conductivity [S/m].
σc Wire conductivity [S/m].
V0 Peak value of the antenna input voltage [V].
VL Peak value of the antenna top-load tip voltage [V].
V(ρ) Voltage distribution on the antenna top-load [V].
Vt Peak value of the antenna top voltage [V].
V(z) Voltage distribution on the antenna vertical part [V].
Wc Power dissipated in the antenna wires [W].
Wd Power dissipated in the antenna ground plane [W].
Win Antenna input power [W].
Wrad Antenna radiated power [W].
Xa Antenna input reactance [Ω].
Xt Antenna top reactance [Ω].
Z0 Near field space impedance [Ω].
Z00 Free space intrinsic impedance (377 Ω).
Z0m Equivalent transmission line average characteristic

impedance of the antenna vertical part [Ω].
Z0t Equivalent transmission line characteristic

impedance of the antenna top-load [Ω].
Za Antenna input impedance [Ω].
Zg Artificial ground plane impedance [Ω].
Zr Ground screen impedance [Ω].
Zs Soil impedance [Ω].
Zt Antenna top impedance [Ω].
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