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Q Calculations of L-C
Circuits and Transmission
Lines: A Unified Approach

Jacques Audet, VE2AZX

Calculate the Q factor of any circuit based on its complex
impedance data. These computations allow easy simulation
and optimization of stub resonators. They apply to RLC circuits,
transmission lines and antennas.

Q  factor calculations of reactive
  circuits are of interest since the Q
  factor relates directly to the circuit

selectivity: The higher the Q, the better the
selectivity and the lower the insertion loss of
the filter. For oscillators, higher Q also means
that lower phase noise is produced. In the case
of antennas, a lower Q is generally preferred,
giving a larger SWR bandwidth.

This paper attempts to clarify the various
methods that can be used to calculate Q fac-
tor. I will show how to calculate the Q factor
using general methods for simple RLC cir-
cuit configurations and will show that the
same methods can be used to compute the Q
factor of stub resonators and antennas oper-
ating outside their resonant frequencies. It
allows computing the SWR bandwidth of
antennas once the Q factor is known.

The calculations for transmission line
stubs may be carried out using Mathcad files
(described later in the article) with attenua-
tion data provided by freeware programs
available on the Web. Simulation results will
be presented as well as measured Q values
on a length of RG-58 cable.

Simple RX Circuits

When the internal circuit configuration or
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equivalent circuit is known, we can measure
the complex impedance at a single frequency
and calculate the Q of that impedance using
the classic relation:

p

s

RX
Q

R X
(Eq 1)

where X is the reactance, Rs the series resis-
tance and Rp the parallel resistance.

The simple series model Rs – jX assumes
that the impedance consists of a resistance Rs

in series with a single reactance X, coming
from a perfect inductance or from a perfect
capacitance. Note that the measurement of Rs

and X only needs to be done at a single fre-
quency. Examples of this are the Q of an ideal
inductor or capacitor. In this model, only two
elements are used to describe the impedance.

Since real capacitors all have some series
inductance, we add it in series with the capaci-
tor. At some frequency the reactances of the L
and C will cancel and the impedance is reduced
to the series Rs. Using Equation 1 to compute
the Q factor yields a value of zero, since the
total reactance is zero. In general, the above
equation cannot be used to compute the Q fac-
tor when multiple reactances are involved. The
Q factor as obtained from Equation 1 is called
the apparent Q, since it is not generally related
to the resonator selectivity.

In this last case the Q cannot be simply
calculated by Equation 1. The equation does
not tell us the selectivity of our circuit since

we now have a resonator. A resonator requires
a minimum of two reactive elements that have
opposite signs.

Q Factor of Series RLC Circuits

A simple RLC circuit — series or paral-
lel — can be used as a resonator. We will
first consider the series RLC configuration.
Here we are interested in the Q factor at reso-
nance and at other frequencies.

The impedance Z of the RLC circuit
shows zero reactance at resonance. Then
clearly Equation 1 cannot be used to com-
pute the Q factor at resonance.

Equation 2 shows how to calculate the Q
factor at resonance and below. Note that the
derivative term

dX

dω
implies that the reactance X is effectively cal-
culated (or measured) at two frequencies:1, 2
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(Eq 2)

where

sZ R jX ,

ResR Z
and

ImX Z
1Notes appear on page 51.
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Rs and X and are the real and imaginary com-
ponents of the RLC circuit impedance Z and

2 f.ω = π
Equation 2 may be simplified as:

r
a

s

F L
Q

R f C
(Eq 3)

where Qa is the Q factor below the resonant
frequency Fr and f is the frequency at which
Qa is calculated.

The resonant frequency may be expressed
as:

1

2
rF

LC
(Eq 4)

After substituting Equation 4 into
Equation 3, we get:

1

2
a

s

Q
f C R

(Eq 5)

This equation is valid at resonance and
below.

Equation 5 simply represents the ratio of
the capacitive reactance to the series
resistance, Rs.

An equation similar to Equation 2 may
be used above resonance:

2
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(Eq 6)

The sign of the first term of the
numerator, X, is now positive. As before,
Equation 6 may be simplified:
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(Eq 7)

After substituting Equation 4 into
Equation 7, we get:

2
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Q
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(Eq 8)

This equation is valid at resonance and
above.

Equation 8 simply represents the ratio of
inductive reactance to the series resistance,
Rs.

Equations 2 and 6 may be combined by
taking the absolute value of X in the first
numerator term. Equation 9 gives the Q
factor of a series RLC circuit, below and
above the resonant frequency.
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(Eq 9)

This equation is for computing the Q
factor above and below series resonance.

Figure 1 shows an example of the Q factor
variation versus frequency as computed from
Equation 9 or from Equations 5 and 8. Note
that the Q factors calculated by Equations 5
and 8 are equal at the resonant frequency of

10 MHz, since the reactances are also equal.
Above and below 10 MHz, the reactances in-
crease, causing a corresponding increase in the
Q factor. The “off resonance” Q factor gives
the selectivity obtained when a lossless reac-
tance is used to recover resonance.

Q Factor of Parallel RLC Circuits

The Q factor of RLC parallel circuits may
also be calculated with the general formulas
given by Equations 2 and 6 above. In this
case, we need to use the admittances instead
of the impedances, since the reactance goes
to ±infinity at resonance, with a negative re-
actance slope. We then substitute 1/Z for Z
in these equations.

As in series RLC circuits, the Q factor
may also be calculated:
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(Eq 10)

where Re and Im are the real and imaginary
operators.

This equation is for use below resonance,
after substituting 1/Z for Z in Equation 2.

Equation 10 may be simplified:
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(Eq 11)

This equation is for calculating the Q
below resonance. Rp is in parallel with L and
C.

Above resonance:

1 1
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(Eq 12)

Equation 12 may be simplified:

Qb = 2 π  f C Rp (Eq 13)

This equation is for calculating the Q above
resonance.

Equations 10 and 12 may be combined
by taking the absolute value of

1
Im

� �
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in the first numerator term. Equation 14 gives
the Q factor of a parallel RLC circuit, for
use below and above the resonant frequency.
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(Eq 14)

This equation computes the Q factor for
parallel resonance.

Transmission Line Stub Resonators

The transmission line stub resonator al-
ways includes three distributed elements: in-
ductance, capacitance and resistance. Taking
a single measurement of the complex imped-
ance at the stub terminals only allows us to
represent the line as a simple two-element
model, with an apparent Q value as given by
Equation 1. It does not allow Q factor pre-
dictions under resonant conditions. While this
is sufficient for some uses, very often one
needs to know the stub Q factor when the
stub is used as a resonator, with or without a
compensating (loading) reactance. In particu-
lar, it is interesting to know the Q factor of a
quarter wavelength resonator, versus one that
is less than a quarter wavelength long and
brought back to resonance by using capaci-
tive loading at its open end. In some cases,
the shorter resonator will have a higher Q.
Thus it is useful to know how the resonator
unloaded Q varies versus frequency, length,

Figure 1 — Q factor of a
series RLC circuit.

This equation is for calculating the Q
above resonance.
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line attenuation and resonator loading such
as capacitive or inductive loads in both open
and short configurations.

Estimating the Q factor of a “Short”
Unloaded Resonator

In general, Equation 1 above can’t be used
to compute the Q factor for a quarter-wave
resonator, since the reactance value X is zero
or infinite at resonance, and will set the Q to
zero or infinity. We also expect a short line
(say 1% of wavelength) to behave as lumped
inductance in the case of a shorted line and a
lumped capacitance in the case of an open
line, and with a Q factor that can be approxi-
mated by Equation 1.

Computing the Q Factor of a Quarter
Wavelength Unloaded Stub, Open or
Shorted — The Easy Way

The simplest way to calculate the Q fac-
tor of a quarter wavelength unloaded stub is
to use Equation 15.

8.686

o

Q
A

(Eq 15)

where Ao is the attenuation in dB/100 ft and
λ is the wavelength in hundreds of feet.

Equation 15 may also be written in a more
practical form as:

2.7743 o

o

F
Q

A VF
(Eq 16)

where Fo is the quarter wave resonant fre-
quency in MHz, Ao is the attenuation in dB/
100 ft at Fo and VF is the velocity factor.
Equation 16 may also be derived from the
attenuation coefficient α and the phase coef-
ficient β:3

2
Q (Eq 17)

I have found that Equations 15 to 17 ap-
ply to all unloaded resonators — open or
shorted — whose length is an integer mul-
tiple of a quarter wavelength. Note that these
equations do not distinguish between open
and shorted quarter wave resonators. It was
found that open and shorted resonators have
equal Q factors for a given resonance mode,
no matter their conductor and dielectric
losses, as long as we use the same loss val-
ues for both lines.

From Equation 16, given constant values
for Ao and VF, the Q factor is proportional to
the frequency. In real life, the attenuation
factor Ao will increase with frequency, caus-
ing the Q to increase less rapidly.

The line losses, Ao, are the total losses.
Transmission lines have two loss mecha-
nisms, however: conductor losses, which are
caused by skin effect, and dielectric losses,
which occur in the dielectric material.

In practice, in the HF and VHF ranges,

the dielectric losses are much lower than the
conductor losses for coaxial lines. For those
lines, we expect the Q factor of opened lines
(subjected to dielectric losses) to be higher
than their shorted equivalent (subjected to
conductor losses) only when their length is
much below a quarter wavelength.

Computing the Q Factor When the Stub
Length is Below or Equal to a Quarter
Wavelength

Computing the Q factor of a line requires
knowledge of the attenuation due to
conductor losses: Aoc in dB/100 feet and the
attenuation due to dielectric losses —Aod in
dB/100 ft. The frequency term, f, is in MHz.

1oA c K f (Eq 18)

2oA d K f (Eq 19)

where K1 and K2 are respectively the
conductor and dielectric losses in dB/100 ft
at 1 MHz.

The K1 and K2 loss coefficients may be
obtained from the TLDetails.exe program.4

It gives the coefficients for most coaxial
cables. An accompanying Microsoft Excel
file also allows K1 and K2 calculations for
user-entered attenuation data.

For printed circuit lines such as
microstrips, it is convenient to express the
losses as follows:
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f
(Eq 20)

This equation calculates attenuation due
to conductor losses.

o o

r
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(Eq 21)

This equation calculates attenuation due
to dielectric losses.

o o oA A c A d (Eq 22)

efficient, α, and the phase coefficient, β:

ln 10

2000
oA (Eq 24)

(Attenuation in neper/foot)
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(Eq 25)

(Phase coefficient in radians/foot)
VF is the line velocity factor, ce is the ve-

locity of light in million feet/sec, Ao is the
total attenuation in dB/100 ft and f is the fre-
quency in MHz. The complex propagation
coefficient, γ, may now be calculated:

γ  = α + jβ (Eq 26)

To properly model the lossy transmission
line, we must compute the complex line im-
pedance, Zo, using Equation 27. Here the term
R represents the series conductor losses due
to the skin effect and dc conductor resistance.
G is a conductance term representing the
parallel dielectric losses. Both R and G are a
function of the frequency, f, thus making Zo

a complex value, which is also a function of
the frequency.6

6
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(Eq 27)

In Equation 27, R and G are in ohms per
foot and siemens per foot, respectively. The
L and C are the distributed inductance in μH/
foot and capacitance in pF/foot, respectively.
The frequency, f, is in MHz.

The R, L, C and G components will be
calculated as follows (See Note 6.):

Im

2
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f
(Eq 28)

L is in μH per foot.
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(Eq 29)

where C is in pF per foot.

R = 2 α Re[ Z0 ] (Eq 30)

where R is in ohms per foot.
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(Eq 31)

This equation calculates the total losses.
Ao is the total attenuation in dB/100 ft,

Aocr is the conductor loss attenuation in dB/
100 ft at frequency fr, f is the frequency, Aodr
is the dielectric loss attenuation in dB/100 ft
at the same frequency, fr.

Note that the conductor losses vary in pro-
portion to the square root of the frequency,
and the dielectric losses are proportional to
frequency. The program TXLine.exe may be
used to compute the PCB line attenuations
for various configurations.5

Note that Aod may also be derived from the
loss tangent, L tan, of the dielectric. VF is the
velocity factor and f is the frequency in MHz.

2.78 tano

f
A d L

VF
(Eq 23)

We need to compute the attenuation co-

where G is in siemens per foot
Computing R and G requires the knowl-

edge of Zo and to compute Zo we need the R
and G values. To get around this problem we
use an iterative process where we first use a
real value of Zo + j 0 ohms for Zo (the cable
nominal impedance). We then calculate R, L,
G and C. These values are then used to re-
calculate a new complex value for Zo. This

Propriétaire
Placed Image

Propriétaire
Placed Image

Propriétaire
Placed Image

Propriétaire
Placed Image



46  Sep/Oct  2006

Figure 2 — Resonant modes for shorted and open lines along
with the relevant equations for Q calculations.

Figure 3 — Q factor of a shorted line. Q factor versus frequency for a
10 foot length of RG-58C, giving first resonance at ~16.229 MHz (fq).
Solid line is resonator Q, dotted line is the apparent Q.

Figure 4 — Q factor of an open line. Q factor versus frequency for
a 10 foot length of RG-58C, giving first resonance at ~16.229 MHz
(fq). Solid line is resonator Q, dotted line is the apparent Q.

Figure 5 — Q factor versus line length for RG-58C, at 16.229 MHz.

Figure 6 — Q factor versus line length for RG-58C, at 162.29 MHz.

Figure 7 — Q factor versus line length at 500 MHz for a 50 ΩΩΩΩΩ
microstrip, 114 mil wide, above a 62 mil thick FR4 substrate.

process is repeated twice until we get a final value for Zo.
We are now ready to calculate the stub impedances, using the com-

plex value of Zo, for both open and short lines. Equation 32 or 33 will
be used to calculate the stub impedances.

tanh( )

o
s

Z
Z open

len
(Eq 32)

where len is the line length in feet and Zo the stub line complex
impedance.

The shorted stub impedance may be calculated as:
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Text Box
Inches



  Sep/Oct  2006 47

Table 1

Mode Freq Shorted Line Open Line Conductor Dielectric

(MHz) EQ. Used Calc Q Q error EQ. Used Calc Q Q error Losses Losses

dB/100 ft dB/100 ft

1X 10 14 28 <0.1% 9 79 <0.1% 1.0 0.1

1X 16 14 18 0.2% 9 29 <0.1% 2.0 0.02

1X 16 14 16 0.2% 9 14 <0.1% 1.0 1.00

1X 16 14 166 <0.1% 9 142 <0.1% 0.1 0.10

1X 18.5 14 15.5 0.1% 9 22.8 0.1% 2.0 0.02

1X 19 14 10 0.5% 9 11 0.6% 4.0 0.02

1X parallel 19.8545 14 20.3 0.2% 2.0 0.02

1X series 19.8773 9 20.4 <0.1% 2.0 0.02

2X 21 14 23.4 0.1% 9 21 0.2% 2.0 0.02

2X 28 14 or 9 36.9 0.3% 9 or 14 24.3 0.6% 2.0 0.02

2X 28 14 or 9 14.1 2.4% 9 or 14 17.5 1.6% 1.0 1.0

2X 28 14 or 9 143.7 <0.1% 9 or 14 177 <0.1% 0.1 0.1

2X parallel 39.729 9 28.6 0.3% 2.0 0.02

2X series 39.71 14 28.6 0.2% 2.0 0.02

3X 41 9 29 0.3% 14 30.8 0.2% 2.0 0.02

3X 50 14 15.7 4.0% 9 13.4 5.3% 1.0 1.0

3X 50 14 139.6 <0.1% 9 162.4 <0.1% 0.1 0.1

3X parallel 59.5863 14 34.6 0.4% 2.0 0.02

3X series 59.609 9 34.6 0.2% 2.0 0.02

Figure 8 — Capacitance in pF required to keep the resonant
frequency at 500 MHz.

Figure 9 — Shorted stub Q factor versus length with the
microstrip resonated with a capacitor having an ESR of 0.08 ΩΩΩΩΩ.

tanh( )s oZ short Z len (Eq 33)
The stub Q factor may now be calculated

as a function of frequency or length using
Equation 9 for an open stub, since it behaves
like a series resonant circuit. For a shorted stub,
we use Equation 14 to calculate the Q factor,
just like in the case of the RLC parallel cir-
cuit. These calculations are valid below and
above the quarter wave resonant frequency.

shorted and open lines. Equation 14 is used
when the line exhibits parallel resonance and
Equation 9 when it exhibits series resonance,
just like for discrete RLC resonators. Note that
the shorted line presents an inductive reactance
below the first quarter wave resonance while
the open line is capacitive below resonance.

The Mathcad spreadsheets TRL_Q_Calc1.
mcd for use with the TLDetails.exe program
on coaxial lines and TRL_Q_Calc-PCB1.mcd
for use with TXLine.exe program on PCB lines
show all above calculations in detail.4, 5, 7

Examples of Calculated Q factors
versus Frequency for Shorted and
Opened Lines of Identical Lengths

Figures 3 and 4 show the resonator Q fac-
tor for shorted and open lines (a 10-foot length
of RG-58C). The solid curves were computed
from Equations 14 and 9 as per Figure 2, while
the dotted curves show the ratio of reactance
to resistance as computed by Equation 1. This
is the apparent Q. In general, the resonator Q
cannot be computed just by taking the ratio of
reactance to resistance as in Equation 1. This

Resonant Modes

Figure 2 shows the resonant modes for
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approximation is valid for frequencies below
25% of the quarter wave resonant frequency
(~16.229 MHz), however. For both shorted and
open stubs, Equation 16 may be used to calcu-
late the Q factor at all integer multiples of a
quarter wavelength.

Using a constant real value for the line
impedance makes the Q factor versus fre-
quency equal for both open and shorted lines.
This method makes calculations much faster
and simpler, but as shown in Figures 3 and 4,
it will give very large errors in the Q and in
the complex stub impedance. I also discov-
ered that the common transmission line mod-
els used in my professional RF-microwave
circuit simulator use this shortcut too.

Note the Q factor behavior below the quar-
ter wave frequency Fq. At frequencies below
Fq, the Q factor goes down for the shorted
line while it goes up for the open line. This
tells us that the line losses are mostly in the
conductors (~1.8 dB/100 ft while the dielec-
tric losses are ~ 0.14 dB/100 ft. at the quar-
ter wave resonant frequency).

It is also interesting to compute the Q fac-
tor versus line length at a fixed frequency.
Figure 5 shows the Q factor at 16.229 MHz
for a 10-foot length of RG-58C cable. Again
the open line has a much higher Q factor be-
low the quarter wave resonant length of 10 feet.

Figure 6 shows the Q factor versus line
length for a 1 foot length of RG-58C line.
Decreasing the line length by a factor of 10
has increased its resonant frequency by the
same factor and the Q at self resonance goes
from 36 to 100, a factor of ~3. This is pos-
sible since the losses are mainly conductor
losses: 5.77 dB/100 ft and the dielectric losses
are 1.36 dB/100 ft at 162.29 MHz. Note also
that the loss tangent of the dielectric is 0.002.

In contrast, PCB losses will be much
higher with say, FR4 which has a typical loss
tangent of 0.02

The Q factor for a 50-Ω microstrip
trace has been computed in Figure 7. The
PCB loss tangent is 0.02 and the trace
length is 3.469 inches to obtain quarter
wave resonance at 500 MHz. At that fre-
quency, the conductor losses are 5.7 dB/
100 feet and the dielectric losses are
47.5 dB/100 feet.

Note that the open line now has its Q fac-
tor almost constant below quarter wave reso-
nance. The Q factor of the shorted line is now
much higher, in fact the shorter the line the
higher the Q. The shorted stub becomes at-
tractive as a resonator by using shorter lines
with the higher Q. Then a low loss capacitor
will be required to bring the line back to reso-
nance at 500 MHz.

Figure 8 shows the required stub loading
capacitance versus line length to resonate at
500 MHz. When the line length approaches
a quarter wavelength, the required loading
capacitance decreases toward zero.

Real capacitors have a series resistance
that limits their Q factor, however. In
the next example, a series resistance of
0.08 Ω is assumed. The effective Q factor
of the stub and the capacitor may be com-
puted by recalling that the Q factors add
like parallel resistors. There is now an
optimum length that will provide the high-
est Q, which is around 1 inch or about
25% of the original self resonant length.
See Figure 9.

The highest Q will generally be ob-
tained by paralleling multiple capacitors
to decrease the effective series resistance.
Note that wider PCB traces will provide
higher Q factors, even if the line Zo is
lower.

Substituting RG-174 coax gives a
maximum Q of 100 at 2.5 inches, while a
length of RG-213 shows a maximum Q of
394 at a quarter wavelength (3.9 inches).
This means that a low to very-low-loss line
will have its highest Q at a quarter wave-
length and above. I have measured the
unloaded Q of a 6-inch-diameter quarter-
wave resonator at 145 MHz in quarter-
wave mode and 430 MHz in ¾-wave mode.
At 145 MHz, the unloaded Q was 5324
and 9065 at 430 MHz: an increase by a
factor of 1.7. This is also predicted by the
models presented here.

Note that adding a lossless reactance
in parallel (or series) with the stub — to
modify its resonant frequency — does not
change its Q versus frequency as calcu-
lated from Equations 9 or 14. Only its reso-
nant frequency is changed.

So far from these simulations, Equa-
tions 9 and 14 make sense for calculating
the resonator unloaded Q for resonator
lengths ranging from 1% of the wavelength
to many wavelengths. At low frequencies
where the resonator is less than 1/16 wave-
length, we get the same results by simply
taking the reactance-to-resistance ratio to
compute the Q factor instead of using the
more complex Equations 9 and 14.

Validating the Computed Resonator Q
from the Calculated Stub Impedance

A second method of calculating the
resonator Q factor has been used to deter-
mine the limits of validity of Equations 9
and 14 as applied to transmission lines.
The resonator Q may be determined by
finding the two frequencies f1 and f2 around
the stub resonance that yield a stub im-
pedance with a phase angle of ±45°. The
exact stub resonant frequency is fr, where
its input reactance is zero in the case of
series resonant lines. For lines that are
parallel resonant, we use admittances and
note the frequency where the suceptance
goes to zero. For Q factors above 10, fr

can be taken as the average of f1 and f2.

The stub Q factor can then be calcu-
lated from:

2 1

rf
Q

f f
(Eq 34)

Note that the stub impedance measure-
ments may be done at either end of the line,
without affecting the Q value.

This method may also be used to com-
pute the Q factor at frequencies other than at
resonance by adding a lossless frequency-
dependant series reactance (L or C) in the
case of a series resonant line. Similarly, par-
allel resonant lines require the addition of a
susceptance in shunt with the line. This
method was used to verify the accuracy of
Equations 9 and 14 with the help of Mathcad
to do the calculations.

Table 1 summarizes the results for a line
length of 8.17 feet. The frequency for the
losses is 5 MHz. The Q error was derived by
using Equation 34 to compute the resonator
Q from the impedance/admittance data and
comparing the values obtained with Equa-
tions 9 or 14.

At 28 MHz, we are about halfway be-
tween resonances, and either Equations 9 or
14 may be used, for both shorted and opened
lines. This value is the geometric average
between the first and second resonances.

As it can be seen from Table 1, the error
is largest for Q values below 20 or so. The
worst errors occur at the highest resonance
modes having the lowest Qs. Below quarter
wave resonance, the Q error is below 1% for
Qs above 10.

Computing Resonator Q from Band-
width Measurements at Multiples of
Quarter Wavelength Resonance

Another way to verify the resonator Q
factor is to build a band-pass filter and mea-
sure its selectivity by measuring its –3 dB
points on an S21 display. To precisely deter-
mine the resonator Qu (unloaded Q), the cou-
pling of the stub under test to the source and
detector will have to be very small. Equation
34 is used to compute the resonator Q factor.
Figure 10 shows the circuit that I have used
for my simulations on a line, which behaves
as a parallel LC resonator.

In Figure 10, the source and detectors have
low impedance (50 Ω). The stub is coupled
to the source-detector via 0.1 pF capacitors.
This method is useful to determine the reso-
nant frequency of a shorted quarter wave line,
since it presents the highest impedance at
resonance. Again, Equation 34 is used to
compute the stub unloaded Q factor, where
f1 and f2 are the –3 dB frequencies, as mea-
sured from the resonant frequency fr. Note
that the source and load resistive impedances
will decrease the Q factor somewhat. Equa-
tion 35 may be used to calculate the unloaded
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Q, based on the measured attenuation at the
resonant frequency and percent bandwidth.

Computing Resonator Q from Band-
width Measurements below Quarter
Wavelength Resonance

Figure 11 shows the setup that may be
used with series resonant RLC elements
when the resonant line is inductive or capaci-
tive. The total reactance is cancelled, leav-
ing the series Rs at resonance. This series Rs

is easily determined by doing an attenuation
test (S21) in a 50-to-50 Ω circuit at the se-
ries resonant frequency. The equivalent L and
C lumped elements must also be determined
by doing two more attenuation tests, before
one can calculate the Q factor. I have devel-
oped an Excel file that does these calcula-
tions: Calc_SeriesRLC.xls.7 Note that the C
element has to be replaced by an inductor
when the stub impedance is capacitive.

Tests were done on a 100-inch length of
RG-58 cable, by measuring the complex re-
flection coefficient over 201 frequency
points, using a lab-quality vector network
analyzer (HP 8753D). See Figure 12. The
measured coefficients were then converted
to impedance data using Mathcad. The Q
factor was calculated as per Equations 9 and
14 (solid curves) and as per Equation 1 (dot-
ted curves). These dotted curves show the
cable resonant frequencies; for example,
where the reactance is zero: 19.4 MHz and
38.8 MHz.

Shorted and Open Line Measurements

In Figure 12, the shorted line exhibits par-
allel resonance at 19.4 MHz, and Equation
14 is used to compute the resonator Q factor
up to 27 MHz. Equation 9 is used from
27 MHz up to 50 MHz, since we have a se-
ries resonance at 38.8 MHz.

For the open line of Figure 13, the equa-
tions are used in the reverse order. Note that
the open line has a higher Q factor. The above
Q curves are representative of a line that has
much less dielectric losses than conductor
losses as in Figures 3 and 4. Note the Q curve
sloping down below 3 MHz. This is possibly
caused by the inaccuracies in the measure-
ments, especially for resistive impedance
values below 5 Ω.

Measured Q Values versus Computed
Values

Table 2 shows the percentage error between
measured Q factors versus the computed val-
ues at three frequencies. Notice that there is
good agreement between the two. The mea-
sured Q was computed directly from attenua-
tion measurements, as per Figures 10 and 11.
A series inductor was used to resonate the line
when its reactance is capacitive and vice-versa.

The Q of the inductor was measured and its
series resistance was subtracted from the total
series resistance to obtain the actual stub se-
ries resistance. This data was then used to cor-
rect the resistive part of the VNA measure-
ments, by calculating the offset between the
two measurements. This correction is only
valid around the test frequency. Then the Q
was computed using the corrected VNA mea-
surements, with Equations 9 and 14.

Table 3 shows the calculated and mea-
sured Q factors at the (approximate) quarter
wave frequency. The calculated values were
obtained from the Equations 14 and 9, while
the measured values were done by imped-
ance measurements, using Equation 34. Keep
in mind that the measured Q value for open
line has probably more errors, since the re-
sistive part of the impedance is around 1 Ω.

The conductor losses are dominant here
and we can also use equation 16 to compute
the resonator Q based on the measured stub
attenuation in dB/100 ft. The Q value ob-
tained is 32.00 at 19.375 MHz.

Figure 10 — Measuring and computing
resonator Q from bandwidth measurements.

Figure 11 — Measuring and computing
resonator Q below quarter wavelength
resonance.

Figure 12 — Measured Q
factor of a shorted line.
Computed Q factor
versus frequency (solid
lines, from impedance
measurements) for a
100 inch length of RG-58,
giving first resonance at
~19.4 MHz. Compare
these to simulations in
Figures 3 and 4. The
dotted lines show the
apparent Q.

Table 2

Shorted Line Open Line

Frequency (MHz) % Q error Frequency (MHz) % Q error

9.33 2.7 4.92 2.9

28.93 2.1 28.93 1.5

Table 3

Shorted Line Open Line

Frequency (MHz) Calculated Q (Eq 14) Measured Q Frequency (MHz) Calculated Q (Eq 9) Measured Q

19.375 35.3 19.375 36.36

19.106 34.43 19.334 30.95

Using the Resonator as a Bandpass
Filter

Knowing the unloaded Q, as calculated
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above, allows us to compute the insertion loss
of a single resonator bandpass filter based
on the percent bandwidth.

100
20 log 1

 u

Loss
K Q

(Eq 35)

Equation 35 shows the relation between
the unloaded Q (Qu), K the percentage band-
width (ratio of bandwidth to center frequency
in %) and the resonator losses in dB.8 For
instance, a 2% bandwidth with a Qu of 200
will give an insertion loss of 2.5 dB.

Q Factor of Antennas

Equations 9 (for open circuit antennas) and
14 (for closed loop antennas) may also be used
to calculate the Q factor of antennas, based on
their impedance data. I have provided a
Mathcad file that does impedance calculations
on a monopole for various lengths.7, 9 The
monopole is treated as a transmission line
whose average impedance Za is given by:

Za = 60 ln (hd) (Eq 36)

where hd is the length-to-radius ratio. Here,
the radiation resistance is proportional to the
frequency to the power 1.7. It is added to the
conductor losses.

Figure 14 gives the simulated monopole
Q factor. Once the Q factor is known, the
bandwidth, BW, may be easily calculated
using Equation 37. The bandwidth obtained
gives the frequencies where the impedance
phase angle is ±45°.

Figure 14 — Monopole Q factor (solid curve) as calculated from
the Mathcad file: Monopole-Ralph.mcd. The quarter wave
resonance is at 6 MHz, as shown by the dotted line curve
(apparent Q) which was calculated from the reactance to
resistance ratio. Note the steep increase in Q as the frequency is
lowered. This comes from the fact that the radiation resistance
decreases approximately as frequency to the power 1.7. At 1 MHz
and below we have a low-loss air insulated capacitor!

Figure 13 — Measured Q factor of an open line. Computed Q
factor versus frequency (solid lines, from impedance
measurements) for a 100 inch length of RG-58, giving first
resonance at ~19.4 MHz. Compare these to simulations in Figures
3 and 4. The dotted lines show the apparent Q.

points or to an SWR of ~2.62. For a 2:1 SWR,
the bandwidth is 70% of the above. This as-
sumes that the SWR is 1:1 at resonance.

Conclusion

In this paper I have shown that a single
general equation may be used to calculate
the Q factor of RLC circuits and transmis-
sion lines as it relates to circuit selectivity. I
have shown that series resonances are taken
care by Equation 9 while Equation 14 takes
care of parallel resonances. The difference
between the two is the use of impedances for
the first and admittances for the second equa-
tion. By using the provided Mathcad files and
the associated public domain programs, it is
easy to compute the Q factor of coaxial and
microstrip or stripline resonators for any
length and frequency. The calculated Q fac-
tor agrees very well with the measured data
and with the Q values computed by the im-
pedance measurement method. When simu-
lating stub resonators, it is very important that
the full R L G C transmission line models be
used. The Mathcad files show how to opti-
mize the Q factor of PCB microstrip and
stripline resonators. The same files also show
the calculations of R L C G functions and
coefficients to be incorporated into any RF
simulation software. It is interesting to note
that these four frequency dependent param-
eters fully describe the transmission line. I
found that the Q values predicted from Equa-
tions 9 and 14 fully agree with the values
obtained in the simulation software.

The simulations presented here show that it is
possible to get higher Q factors on low-loss lines
by using higher-order modes, such as ¾ λ. For
PCB resonator traces, the optimum Q is gener-
ally below a quarter wavelength.

Note that the models presented here do

not take into account the radiation losses and
surface roughness of microstrips. The line dc
resistance has been included in the PCB line
models, since its contribution is not negli-
gible at narrow trace widths. For coaxial
lines, the dc resistance has been omitted to
keep the models simpler and relieve the user
from searching for the resistance data. This
makes the coaxial models less accurate be-
low approximately 5 MHz. The dc resistance
may be added to the ac conductor resistance
by taking the square root of the sum of the
squares of the dc and ac resistances, as done
in the file: TRL_Q_Calc-PCB1.mcd.

Thanks to Chase Hearn and Yan Gunmar
for triggering this study and providing
various helpful references and comments.

Appendix

An intuitive view of the general function
for calculating the Q factor is derived here.

The general equation for computing the
Q factor of RLC circuits, transmission line
resonators and antennas operating in the se-
ries resonant mode is given by the source at
Note 1. This equation is valid from low fre-
quencies, though series resonance and for
frequencies much above series resonance.

2

XdXQ
R d (Eq A1)

Where ω = 2π f, the radian frequency, R
and X are respectively the real and imagi-
nary parts of the impedance .

Equation A1 may be written in terms of
the frequency:rf

BW
Q

(Eq 37)

where fr is the center frequency.
This bandwidth, as calculated from the Q

factor, corresponds to the 7 dB return loss
2

Xf dXQ
R df f (Eq A2)



  Sep/Oct  2006 51

Notice that the first term of Equation A2
represents the Q factor at resonance, when X
= 0.

2
f dXQ
R df (Eq A3)

This equation gives the Q Factor at reso-
nance, as very often seen in textbooks.

Applying Equation A2 for a series reso-
nant circuit, for frequencies well above the
resonant frequency, we get:

2dX L
df (Eq A4)

Recall that the reactive component comes
from the inductance.

2
2

2hf

f Lf
Q L

R f (Eq A5)

where Qhf is the Q factor for frequencies well
above the resonant frequency. This simpli-
fies to:

2 L
hf

f L X
Q

R R
(Eq A6)

where XL is the inductive reactance. This is
the same as Equation 1 in the main text —
valid well above the resonant frequency.

For frequencies well below the resonant
frequency, where the reactance component
comes from the capacitance, we get:

2

1

2

dX
df f C

(Eq A7)

2

1 1
2 2 2

lf

f
Q

R f C f C f

(Eq A8)
Qlf is the Q factor for frequencies well

below the resonant frequency.
After simplification:

1

2

C
lf

X
Q

f R C R
(Eq A9)

where XC is the capacitive reactance — valid
well below the resonant frequency. This is
the same as Equation 1 in the main text.
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1Peter Vizmuller, RF Design Guide, Artech

House, Norwood, MA, 1995, p. 235.
2The Small Koch Fractal Monopole: Theory, design

and applications, p 6. See www-personal.engin.
umich.edu/~lschulwi/koch.pdf
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